Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 15
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

To investigate the mechanical properties of tunnel lining concrete under different moderate-low strain rates after high temperatures, uniaxial compression tests in association with ultrasonic tests were performed. Test results show that the ultrasonic wave velocity and mass loss of concrete specimen begin to sharply drop after high temperatures of 600°C and 400°C, respectively, at the strain rates of 10‒5s‒1 to 10‒2s‒1. The compressive strength and elastic modulus of specimen increase with increasing strain rate after the same temperature, but it is difficult to obtain an evident change law of peak strain with increasing strain rate. The compressive strength of concrete specimen decreases first, and then increases, but decreases again in the temperatures ranging from room temperature to 800°C at the strain rates of 10‒5s‒1 to 10‒2s‒1. It can be observed that the strain-rate sensitivity of compressive strength of specimen increases with increasing temperature. In addition, the peak strain also increases but the elastic modulus decreases substantially with increasing temperature under the same strain rate.

Go to article

Authors and Affiliations

L.X. Xiong
Download PDF Download RIS Download Bibtex

Abstract

The main objective of this study is to develop an echocardiographic model of the left ventricular and numerical modeling of the speckles- markers tracking in the ultrasound (ultrasonographic) imaging of the left ventricle. The work is aimed at the creation of controlled and mobile environment that enables to examine the relationships between left ventricular wall deformations and visualizations of these states in the form of echocardiographic imaging and relations between the dynamically changing distributions of tissue markers of studied structures.

Go to article

Authors and Affiliations

Robert Olszewski
Andrzej Nowicki
Janusz Wójcik
Zbigniew Trawiński
Download PDF Download RIS Download Bibtex

Abstract

Filler surface modification has become an essential approach to improve the compatibility problem between natural fillers and polymer matrices. However, there is limited work that concerns on this particular effect under dynamic loading conditions. Therefore, in this study, both untreated and treated low linear density polyethylene/rice husk composites were tested under static (0.001 s –1, 0.01 s –1 and 0.1 s –1) and dynamic loading rates (650 s –1, 900 s –1 and 1100 s –1) using universal testing machine and split Hopkinson pressure bar equipment, respectively. Rice husk filler was modified using silane coupling agents at four different concentrations (1, 3, 5 and 7% weight percentage of silane) at room temperature. This surface modification was experimentally proven by Fourier transform infrared and Field emission scanning electron microscopy. Results show that strength properties, stiffness properties and yield behaviour of treated composites were higher than untreated composites. Among the treated composites, the 5% silane weight percentage composite shows the optimum mechanical properties. Besides, the rate of sensitivity of both untreated and treated composites also shows great dependency on strain rate sensitivity with increasing strain rate. On the other hand, the thermal activation volume shows contrary trend. For fracture surface analysis, the results show that the treated LLDPE/RH composites experienced less permanent deformation as compared to untreated LLDPE/RH composites. Besides, at dynamic loading, the fracture surface analysis of the treated composites showed good attachment between RH and LLDPE.
Go to article

Authors and Affiliations

Mohd Firdaus Omar
1 2
ORCID: ORCID
Mohd Mustafa Al Bakri Abdullah
1 2
ORCID: ORCID
Sam Sung Ting
1 2
ORCID: ORCID
B. Jeż
3
ORCID: ORCID
M. Nabiałek
3
ORCID: ORCID
Hazizan Md Akil
4
ORCID: ORCID
Nik Noriman Zulkepli
1
ORCID: ORCID
Shayfull Zamree Abd Rahim
1
ORCID: ORCID
Azida Azmi
2
ORCID: ORCID

  1. Universiti Malaysia Perlis (UniMAP),Centre of Excellent Geopolymer & Green Technology (CeGeoGTech), Perlis, Malaysia
  2. Universiti Malaysia Perlis (UniMAP), Faculty of Chemical Engineering Technology, Perlis, Malaysia
  3. Częstochowa University of Technology, Faculty of Mechanical Engineering and Computer Science, 42-200 Częstochowa, Poland
  4. Universiti Sains Malaysia, School of Materials and Mineral Resources Engineering, Pulau Pinang, Malaysia
Download PDF Download RIS Download Bibtex

Abstract

In this paper, the microstructural and texture changes in polycrystalline CuZn30 alloy, copper, and AA1050 aluminium alloy have been studied to describe the crystal lattice rotation during shear bands formation. The hat-shaped specimens were deformed using a drop-hammer at the strain rate of 560 s –1. Microstructure evolution was investigated using optical microscopy, whereas texture changes were examined with the use of a scanning electron microscope equipped with the EBSD facility. The microstructural observations were correlated with nanohardness measurements to evaluate the mechanical properties of the sheared regions. The analyses demonstrate the gradual nature of the shear banding process, which can be described as a mechanism of the bands nucleation and then successive growth rather than as an abrupt instability. It was found that regardless of the initial orientation of the grains inside the sheared region, a well-defined tendency of the crystal lattice rotation is observed. This rotation mechanism leads to the formation of specific texture components of the sheared region, different from the one observed in a weakly or non-deformed matrix. During the process of rotation, one of the {111} planes in each grain of the sheared region ‘tends’ to overlap with the plane of maximum shear stresses and one of the <110> or <112> directions align with the shear direction. This allows slip propagation through the boundaries between adjacent grains without apparent change in the shear direction. Finally, in order to trace the rotation path, transforming the matrix texture components into shear band, rotation axis and angles were identified.
Go to article

Authors and Affiliations

I. Mania
1
ORCID: ORCID
H. Paul
1
ORCID: ORCID
R. Chulist
1
ORCID: ORCID
P. Petrzak
1
ORCID: ORCID
M. Miszczyk
1
ORCID: ORCID
M. Prażmowski
2
ORCID: ORCID

  1. Polish Academy of Sciences, Institute of Metallurgy and Materials Science, 25 Reymonta Str., 30-059 Krakow, Poland
  2. Opole University of Technology, Faculty of Mechanics, 76 Prószkowska Str., 45-758 Opole, Poland
Download PDF Download RIS Download Bibtex

Abstract

The fracture and fragmentation of concrete under static and dynamic loads are studied. The uniaxial compressive strength test is employed to study the concrete behavior under static loads while the split Hopkinson pressure bar is used to study the dynamic behavior of the concrete under static loads. The theories for acquiring the stress, strain and strain rate of the concrete in the dynamic test by Hopkinson pressure bar has been introduced. The fracture patterns of the concrete in the uniaxial compressive test have been obtained and the static concrete compressive strengths have been calculated. The fracture patterns of the concrete in the uniaxial compressive test have been obtained and the static concrete compressive strengths have been calculated. The fracture and fragmentation of the specimen under dynamic loads have been acquired and the stress-strain curves of concrete under various impact loads are obtained. The stress-strain curve indicates a typical brittle material failure process which includes existing micro-fracture closure stage, linear-elastic stage, nonlinear-elastic stage, and post-failure stages. The influence of the loading rate for the compressive strength of the concrete has compared. Compared with the concrete under static loads, the dynamic loads can produce more fractures and fragments. The concrete strength is influenced by the strain rate and the strength increases almost linearly with the increase of the strain rate.

Go to article

Authors and Affiliations

Huaming An
ORCID: ORCID
Lei Liu
Download PDF Download RIS Download Bibtex

Abstract

An optical measurement method of radial displacement of a ring sample during its expansion with velocity of the order 172 m/s and estimation technique of plastic flow stress of a ring material on basis of the obtained experimental data are presented in the work. To measure the ring motion during the expansion process, the Phantom v12 digital high-speed camera was applied, whereas the specialized TEMA Automotive software was used to analyze the obtained movies. Application of the above-mentioned tools and the developed measuring procedure of the ring motion recording allowed to obtain reliable experimental data and calculation results of plastic flow stress of a copper ring with satisfactory accuracy.

Go to article

Authors and Affiliations

Jacek Janiszewski
Download PDF Download RIS Download Bibtex

Abstract

A method of tensile testing of materials in dynamic conditions based on a slightly modified compressive split Hopkinson bar system using a shoulder is described in this paper. The main goal was to solve, with the use of numerical modelling, the problem of wave disturbance resulting from application of a shoulder, as well as the problem of selecting a specimen geometry that enables to study the phenomenon of high strain-rate failure in tension. It is shown that, in order to prevent any interference of disturbance with the required strain signals at a given recording moment, the positions of the strain gages on the bars have to be correctly chosen for a given experimental setup. Besides, it is demonstrated that - on the basis of simplified numerical analysis - an appropriate gage length and diameter of a material specimen for failure testing in tension can be estimated.

Go to article

Authors and Affiliations

Robert Panowicz
Jacek Janiszewski
Download PDF Download RIS Download Bibtex

Abstract

The article presents the results of investigation of ultra-strength nanostructured bainitic steel Fe-0.6%C-1.9%Mn-1.8%Si-1.3%Cr-0.7%Mo (in wt. %) subjected to shear and uniaxial compression under high strain rate loading. Steel of microstructure consisted of carbide-free bainite and carbon enriched retained austenite presents a perfect balance of mechanical properties especially strength to toughness ratio. Two retained austenite morphologies exist which controlled ductility of the steel: film between bainite laths and separated blocks. It is well established that the strain induced transformation of carbon enriched retained austenite to martensite takes place during deformation. Shear localisation has been found to be an important and often dominant deformation and fracture mode in high-strength steels at high strain rate. Deformation tests were carried out using Gleeble simulator and Split Hopkinson Pressure Bar. Shear and compression strength were determined and toughness and crack resistance were assessed. Susceptibility of nanostructured bainitic steel to the formation of adiabatic shear bands (ASBs) and conditions of the bands formation were analysed. The results suggest that the main mechanism of hardening and failure at the dynamic shearing is local retained austenite transformation to high-carbon martensite which preceded ASBs formation. In the area of strain localization retained austenite transformed to fresh martensite and then steel capability to deformation and strengthening decreases.

Go to article

Authors and Affiliations

J. Marcisz
J. Janiszewski
Download PDF Download RIS Download Bibtex

Abstract

In this study, medium-carbon steel was subjected to warm deformation experiments on a Gleeble 3500 thermosimulator machine at temperatures of 550°C and 650°C and strain rates of 0.001 s–1 to 1 s–1. The warm deformation behavior of martensite and the effects of strain rate on the microstructure of ultrafine grained medium-carbon steel were investigated. The precipitation behavior of Fe3C during deformation was analyzed and the results showed that recrystallization occurred at a low strain rate. The average ultrafine ferrite grains of 500 ± 58 nm were fabricated at 550°C and a strain rate of 0.001 s–1. In addition, the size of Fe3C particles in the ferrite grains did not show any apparent change, while that of the Fe3C particles at the grain boundaries was mainly affected by the deformation temperature. The size of Fe3C particles increased with the increasing deformation temperature, while the strain rate had no significant effect on Fe3C particles. Moreover, the grain size of recrystallized ferrite decreased with an increase in the strain rate. The effects of the strain rate on the grain size of recrystallized ferrite depended on the deformation temperature and the strain rate had a prominent effect on the grain size at 550°C deformation temperature. Finally, the deformation resistance apparently decreased at 550°C and strain rate of 1 s–1 due to the maximum adiabatic heating in the material.

Go to article

Authors and Affiliations

Q. Yuan
G. Xu
S. Liu
M. Liu
H. Hu
Download PDF Download RIS Download Bibtex

Abstract

The present research deals with the effect of pre-strain on the hydrogen embrittlement behavior of intercritically annealed medium-Mn steels. A slow strain-rate tensile test was conducted after hydrogen charging by an electrochemical permeation method. Based on EBSD and XRD analysis results, the microstructure was composed of martensite and retained austenite of which fraction increased with an increase in the intercritical annealing temperature. The tensile test results showed that the steel with a higher fraction of retained austenite had relatively high hydrogen embrittlement resistance because the retained austenite acts as an irreversible hydrogen trap site. As the amount of pre-strain was increased, the hydrogen embrittlement resistance decreased notably due to an increase in the dislocation density and strain-induced martensite transformation.
Go to article

Authors and Affiliations

Sang-Gyu Kim
1
ORCID: ORCID
Young-Chul Yoon
1
ORCID: ORCID
Seok-Woo Ko
1
ORCID: ORCID
Byoungchul Hwang
1
ORCID: ORCID

  1. Seoul National University of Science and Technology, Department of Materials Science and Engineering, Seoul, 01811, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

The flow behavior of 7175 aluminum alloy was modeled with Arrhenius-type constitutive equations using flow stress curves during a hot compression test. Compression tests were conducted at three different temperatures (250°C, 350°C, and 450°C) and four different strain rates (0.005, 0.05, 0.5, and 5 s−1). A good consistency between measured and set values in the experimental parameters was shown at strain rates of 0.005, 0.05, and 0.5 s−1, while the measured data at 5 s−1 showed the temperature rise of the specimen, which was attributable to deformation heat generated by the high strain rate, and a fluctuation in the measured strain rates. To minimize errors in the fundamental data and to overcome the limitations of compression tests at high strain rates, constitutive equations were derived using flow curves at 0.005, 0.05, and 0.5 s−1 only. The results indicated that the flow stresses predicted according to the derived constitutive equations were in good agreement with the experimental results not only at strain rates of 0.005, 0.05, and 0.5 s−1 but also at 5 s−1. The prediction of the flow behavior at 5 s−1 was correctly carried out by inputting the constant strain rate and temperature into the constitutive equation.

Go to article

Authors and Affiliations

Young-Chul Shin
ORCID: ORCID
Dae-Kwan Joung
Seong-Ho Ha
ORCID: ORCID
Ho-Joon Choi
Soong-Keun Hyun
Download PDF Download RIS Download Bibtex

Abstract

In order to study the dynamic mechanical properties of cement soil, uniaxial impact compression tests with different strain rates of cement soil with no fiber and with 0.2% basalt fiber were carried out by using a 50 mm steel split Hopkinson pressure bar device. The test results show that the impact compressive strength, dynamic increase factor and peak strain increase with the increase of strain rate under the same basalt fiber content, showing obvious strain rate effect. The dynamic stress-strain curve of basalt fiber cement soil underwent elastic deformation stage, plastic deformation stage and failure stage.With the increase of strain rate, the degree of fracture of cement soil samples gradually increases, which shows that the number of fragments increases, the size decreases and tends to be uniform. After adding basalt fiber in cement soil, the crack can be delayed, the degree of fracture is smaller than that without fiber and the plasticity of the samples is enhanced. It shows that basalt fiber can improve the impact compressive strength of cement soil.
Go to article

Authors and Affiliations

Hai Cao
1 2
ORCID: ORCID
Xiangyang Zhang
2

  1. Huangshan University, School of Civil Engineering and Architecture, HuangShan 245041, China
  2. Key Laboratory of Safety and High-efficiency Coal Mining, Ministry of Education (Anhui University of Science and Technology), Huainan 232001, China
Download PDF Download RIS Download Bibtex

Abstract

This study describes how microstructural constituents affected the hydrogen embrittlement resistance of high-strength pipeline steels. The American Petroleum Institute (API) X60, X70, and X80 pipeline steels demonstrated complicated microstructure comprising polygonal ferrite (PF), acicular ferrite, granular bainite (GB), bainitic ferrite (BF), and secondary phases, e.g., the martensite-austenite (MA) constituent, and the volume fraction of the microstructures was dependent on alloying elements and processing conditions. To evaluate the hydrogen embrittlement resistance, a slow strain rate test (SSRT) was performed after electrochemical hydrogen charging. The SSRT results indicated that the X80 steel with the highest volume fraction of the MA constituent demonstrated relatively high yield strength but exhibited the lowest hydrogen embrittlement resistance because the MA constituent acted as a reversible hydrogen trap site.
Go to article

Authors and Affiliations

Seung-Hyeok Shin
1
ORCID: ORCID
Dong-Kyu Oh
1
ORCID: ORCID
Sang-Gyu Kim
1
ORCID: ORCID
Byoungchul Hwang
1
ORCID: ORCID

  1. Seoul National University of Science and Technology, Depart ment of Materials Science and Engineering, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea

This page uses 'cookies'. Learn more