Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

To explore the influence of surface energy on the contamination characteristics of insulators, COMSOL Multiphysics software was used to simulate the contamination characteristics of XWP 2-160 insulators under wind tunnel conditions, and the rationality of the modified expression of the dynamic deposition model of the contaminated particles was verified. The change of contamination characteristics before and after changing the surface energy of insulators under natural conditions was simulated and analyzed. The results show that under the original surface energy (72 mJ/m 2) and low surface energy (6.7 mJ/m 2) with the increase in particle size, the contamination amount of an insulator surface area decreases first and then increases. When the wind speed is 2 m/s, the change in the particle size has the most pronounced effect on the amount of contamination. The amounts of contamination for the low surface energy are 64–75%, 60–95%, 55–91% and 54–78% lower than those for the original surface energy for particle sizes of 10, 15, 20 and 25 μm, respectively. For the same wind speed, when the size of contamination particles increases, the difference between the ratio of DC and AC contamination accumulation is gradually increasing because of the influence of the electric field force. From the perspective of the insulator preparation process, the development of low surface energy insulators can improve their anti-fouling performance.
Go to article

Authors and Affiliations

Yukun Lv
1
Qian Wang
1
Zeze Chen
1
ORCID: ORCID
Jiawen Wang
1

  1. Department of Power Engineering, North China Electric Power University
Download PDF Download RIS Download Bibtex

Abstract

The effect of plasma-radical change on the surface properties of Zn-Mg-Al ternary-alloy-coated steel sheets during atmospheric-pressure (AP) plasma treatment using different process gases: O 2, N 2, and compressed air was investigated. The plasma-induced radicals promoted the formation of chemical particles on the surface of the Zn-Mg-Al coating, thereby increasing the surface roughness. The surface energy was calculated using the Owen-Wendtgeometric equation. Contact angle measurements indicated that the surface free energy of the alloy sheets increased upon AP plasma treatment. The surface properties of the Zn-Mg-Al coating changed more significantly in the order air > O 2 > N 2 gas, indicating that the plasma radicals facilitated the carbonization and hydroxylation of the Mg and Al components during the AP plasma treatment.
Go to article

Authors and Affiliations

Chang-U Jeong
1
Jae-Hyeon Kim
1
Je-Shin Park
1
ORCID: ORCID
Min-Su Kim
2
ORCID: ORCID
Sung-Jin Kim
3
ORCID: ORCID
Min-Suk Oh
1
ORCID: ORCID

  1. Jeonbuk National University, Division of Advanced Materials Engineering, Jeonju, Republic of Korea
  2. Korea Institute of Industrial Technology, Gimje, Republic of Korea
  3. Sunchon National University, Department of Advanced Materials Engineering, Sunchon, Republic of Korea

This page uses 'cookies'. Learn more