Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In the summer of 1979, in South Spitsbergen investigations of the extreme temperatures of the ground surface were carried out. The investigations permitted the determination of the magnitude of the extreme temperatures of the ground surface and their relation to the air temperature. The spatial variability of the extreme temperatures of the ground surface was observed.

Go to article

Authors and Affiliations

Andrzej Kamiński
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study was to evaluate the influence of training on body surface temperature over the joints in racehorses, measured by infrared thermography. The study involved monitoring of 14 Thoroughbred racehorses in 6 imaging sessions over a period of 3 months. Temperature measurements of the forelimb and hindlimb joints were made before and just after training. Joint temperature of limbs increased significantly after training. Environmental temperature had a statistically significant influence on surface temperature over the joints. The lowest surface temperatures were recorded over the metacarpophalangeal and metatarsophalangeal joint and the highest temperatures in the shoulder, elbow, hip and stifle joint. The metacarpophalangeal and metatarsophalangeal joints warmed the least during training, but were influenced the most by differences in environmental temperature. The surface temperature difference before and after training is an important indicator of the thermoregulatory response to exercise in racing horses. Understanding surface temperature changes in response to regular training is necessary for future studies on diagnosing injuries of joints.
Go to article

Bibliography

Arfuso F, Giannetto C, Giudice E, Fazio F, Piccione G (2016) Dynamic modulation of platelet aggregation, albumin and nonesterified fatty acids during physical exercise in Thoroughbred horses. Res Vet Sci 104: 86-91.
Bowman KF, Purohit RC, Ganjam VK, Pechman RD Jr, Vaughan JT (1983) Thermographic evaluation of corticosteroid efficacy in amphotericin B – induced arthritis in ponies. Am J Vet Res 44: 51-56.
Ciutacu O, Tanase A, Miclaus I (2006) Digital infrared thermography in assessing soft tissue injuries on sport equines. Bull Univ Agric Sci Vet Med 63: 228-233.
Dyson S, Lakhani K, Wood J (2001) Factors influencing blood flow in the equine digit and their effect on uptake of 99 m technetium methylene diphosphonate into bone. Equine Vet J 33: 591-598.
Field A (2009) Discovering statistics using SPSS, 3rd ed., Sage Publications Ltd, London.
Gaschen L, Burba DJ (2012) Musculoskeletal injury in thoroughbred racehorses: correlation of findings using multiple imaging modalities. Vet Clin North Am Equine Pract 28: 539-561.
Hodgson DR, Davis RE, McConaghy FF (1994) Thermoregulation in the horse in response to exercise. Br Vet J 150: 219-235.
Howell K, Dudek K, Soroko M (2020) Thermal camera performance and image analysis repeatability in equine thermography. Infrared Phys Technol 110: 103447.
Jodkowska E (2005) Body surface temperature as a criterion of the horse predisposition to effort [in polish]. Zesz Nauk Uniw Przyr Wroc 511: 7-114.
Jodkowska E, Dudek K (2000) Studies on symmetry of body surface temperature of race horses [in polish]. Zesz Nauk Prz Hod 50: 307-319.
Jodkowska E, Dudek K, Bek-Kaczkowska I (2001) Effect of race training on body surface temperature of several horse breeds [in polish]. Rocz Nauk Zootech 14: 63-72.
Langman VA, Langman SL, Ellifrit N (2015) Seasonal acclimatization determined by non-invasive measurements of coat insulation. Zoo Biol 34: 368-373.
Lindinger MI, Waller A (2008) Muscle and blood acid-base physiology during exercise and in response to training. In: Hinchcliff KW, Geor RJ, Kaneps AJ (eds) Equine exercise physiology. Saunders Elsevier, Philadelphia, pp 350-381.
Luzi F, Mitchell M, Nanni Costa L, Redaelli V (2013) Thermography: current status and advances in livestock animals and in veterinary medicine, 1 st ed., Fondazione Iniziative Zooprofilattiche e zootecniche Publisher, Brescia.
McGreevy P, Warren-Smith A, Guisard Y (2012) The effect of double bridles and jaw clamping crank nosebands on temperature of eyes and facial skin of horses. J Vet Behav 7: 142-148.
Mogg KC, Pollitt CC (1992) Hoof and distal limb surface temperature in the normal pony under constant and changing ambient temperatures. Equine Vet J 24: 134-139.
Muir P, Peterson AL, Sample SJ, Scollay MC, Markel MD, Kalscheur VL (2008) Exercise-induced metacarpophalangeal joint adaptation in the Thoroughbred racehorse. J Anat 213: 706-717.
O’Sullivan CB, Lumsden JM (2003) Stress fractures of the tibia and humerus in Thoroughbred racehorses: 99 cases (1992-2000). J Am Vet Med Assoc 222: 491-498.
Palmer SE (1983) Effect of ambient temperature upon the surface temperature of the equine limb. Am J Vet Res 44: 1098-1101.
Piccione G, Caola G, Mortola JP (2005) Scaling the daily oscillations of breathing frequency and skin temperature in mammals. Comp Biochem Physiol A Mol Integr Physiol 140: 477-486.
Prochno HC, Barussi FM, Bastos FZ, Weber SH, Bechara GH, Rehan IF, Michelotto PV (2020) Infrared thermography applied to monitoring musculoskeletal adaptation to training in thoroughbred race horses. J Equine Vet Sci 87: 102935.
Purohit RC, McCoy MD (1980) Thermography in the diagnosis of inflammatory processes in the horse. Am J Vet Res 41: 1167-1174.
Purohit RC, Pascoe DD, Turner TA (2006) Use of infrared imaging in veterinary medicine. In: Bronzino JD (ed) The biomedical engineering handbook, third edition: Biomedical engineering fundamentals. Taylor and Francis Group, Boca Raton, pp 1-8.
Reed SR, Jackson BF, Mc Ilwraith CW, Wright IM, Pilsworth R, Knapp S, Wood JLN, Verheyen KL (2012) Descriptive epidemiology of joint injuries in Thoroughbred racehorses in training. Equine Vet J 44: 13-19.
Shephard RJ (1982) Physiology and biochemistry of exercise, 1st ed., Praeger Publishers Inc, New York. Simon EL, Gaughan EM, Epp T, Spire M (2006) Influence of exercise on thermographically determined surface temperatures of thoracic and pelvic limbs in horses. J Am Vet Med Assoc 229: 1940-1944.
Soroko M, Davies-Morel MCG, Howell K (2016) The thermography in equestrian sport. In: Quesada JIP (ed) Application of infrared thermography in sports science, Springer Publisher, Berlin, pp 265-296.
Soroko M, Dudek K, Howell K. Jodkowska E, Henklewski R (2014) Thermographic evaluation of racehorse performance. J Equine Vet Sci 34: 1076-1083.
Soroko M, Howell K (2018) Infrared thermography: Current applications in equine medicine. J Equine Vet Sci 60: 90-96.
Soroko M, Jodkowska E, Dudek K (2015) Thermography diagnosis in monitoring the annual training cycle of racehorses [in polish]. Med Weter 71: 52-58.
Soroko M, Howell K, Dudek K (2017b) The effect of ambient temperature on infrared thermographic images of joints in the distal forelimbs of healthy racehorses. J Therm Biol 66: 63-67.
Soroko M, Howell K, Dudek K, Henklewski R, Zielińska P (2017a) The influence of breed, age, gender, training level and ambient temperature on forelimb and back temperature in racehorses. Anim Sci J 88: 347-355.
Soroko M, Howell K, Dudek K, Wilk I, Zastrzeżyńska M, Janczarek I (2018) A pilot study into the utility of dynamic infrared thermography for measuring body surface temperature changes during treadmill exercise in horses. J Equine Vet Sci 62: 44-46.
Turner TA (1996) Thermography as an aid in the localization of upper hindlimb lameness. Pferdeheilkunde 12: 632-634.
Turner TA (2001) Diagnostic thermography. Vet Clin North Am Equine Pract 17: 95-114.
Turner TA, Pansch J, Wilson JH (2001) Thermographic assessment of racing thoroughbreds. Proc Am Assoc Eq Pract 47: 344-346.
Whitton RC, Trope GD, Ghasem-Zadeh A, Anderson GA, Parkin TD, Mackie EJ, Seeman E (2010) Third metacarpal condylar fatigue fractures in equine athletes occur within previously modelled subchondral bone. Bone 47: 826-831.
Yarnell K, Fleming J, Stratton TD, Brassington R (2014) Monitoring changes in skin temperature associated with exercise in horses on a water treadmill by use of infrared thermography. J Therm Biol 45: 110-116.
Go to article

Authors and Affiliations

M. Soroko
1
W. Górniak
2
M. Godlewska
1
K. Howell
3

  1. Institute of Animal Breeding, Wroclaw University of Environmental and Life Sciences, Chelmonskiego 38C, 51-630 Wroclaw, Poland
  2. Department of Automotive Engineering, Wroclaw University of Science and Technology, Na Grobli 13, 50-421 Wroclaw, Poland
  3. Microvascular Diagnostics, Institute of Immunity and Transplantation, Royal Free Hospital, Pond Street, London NW3 2QG, UK
Download PDF Download RIS Download Bibtex

Abstract

The difficulties of access and detailed measurements of land surface temperature (LST) and water surface temperature (WST) especially in wetlands made the use of remote sensing data as one of the sources and techniques to estimate many climate elements including surface temperature and surface emissivity (ɛ). This study aims to estimate the surface tempera-ture of the wetland of Lake Oubeira located in northeastern Algeria and their spatiotemporal evolution in both land and wa-ter. Landsat OLI-TIRS images in two dates (April and September 2016) obtained from the USGS have been used in this work, and forms the basis of a series of operations to obtain the final LST: development of the normalized difference vegeta-tion index (NDVI), conversion of the digital number (DN) of the thermal infrared band (TIR) into spectral radiance as well as the calculation of the effective luminosity temperature of the sensor from the spectral radiation and surface emissivity (ɛ). The results show that the LST varies in space and time (from 16 to 31°C in April and from 24 to 41°C in September). This implies that the absorption of the equilibrium temperature at land cover depends on the optical properties of the sur-face, which are essentially determined by its water content, colour and morphology. At the same time, the water surface is the lowest land cover temperature, which also has a spatial variation (from 19 to 25°C in April and from 26 to 34.5°C in September) induced by atmospheric temperature, wind direction and speed and the depth of the lake.

Go to article

Authors and Affiliations

Chouaib Rezzag Bara
Mohamed Djidel
Fethi Medjani
Sofiane Labar
Download PDF Download RIS Download Bibtex

Abstract

The knowledge of heat transfer processes inside a compressor cylinder is very important from the technical point of view. An adiabatic model of compression can be assumed in theoretical investigations. In practice, the compressor cylinder is always coo_led to decrease the compression work and to reduce the final temperature of a medium being compressed. This paper presents applications of the NANMAC eroding thermocouples to record temperature time histories of surfaces taking a part in the heat exchange during the compression cycle. The thermocouple construction and junction technology ensure a very small thermal inertia. The response time is of the order of I O μs. The eroding thermocouple was used to measure an instantaneous surface temperature of a plate closing the cylinder and the piston head temperature. Because of very low value of the thermoelectric signal, an amplifier of a very high gain and reasonable bandwidth was required. This induced noise of significant amplitude. The recorded experimental data were numerically processed in order to exclude the noise of measurement circuits, and then the data were used to calculate local heat flux rates. To ensure repeatability of the measurements, the experiments were canied out in a specially prepared set-up allowing single compression cycles to be performed.
Go to article

Authors and Affiliations

Stanisław Jędrzejowski
Download PDF Download RIS Download Bibtex

Abstract

The climatic change on King George Island (KGI) in the South Shetland Islands, Antarctica, in the years of 1948–2011 are presented. In the reference period, a statistically significant increase in the air temperature (0.19 ° C/10 years, 1.2 ° C in the analysed period) occurred along with a decrease in atmospheric pressure (−0.36 hPa/10 years, 2.3 hPa). In winter time, the warming up is more than twice as large as in summer. This leads to decrease in the amplitude of the annual cycle of air temperature. On KGI, there is also a warming trend of daily maximum and daily minimum air temperature. The evidently faster increase in daily minimum results in a decrease of the diurnal temperature range. The largest changes of air pressure took place in the summertime (−0.58 hPa/10 years) and winter (−0.34 hPa/10 years). The Semiannual Oscillation pattern of air pressure was disturbed. Climate changes on KGI are correlated with changing surface temperatures of the ocean and the concentration of sea ice. The precipitation on KGI is characterised by substantial variability year to year. In the analysed period, no statistically significant trend in atmospheric precipitation can be observed. The climate change on KGI results in substantial and rapid changes in the environment, which poses a great threat to the local ecosystem.
Go to article

Authors and Affiliations

Marek Kejna
Andrzej Araźny
Ireneusz Sobota
Download PDF Download RIS Download Bibtex

Abstract

The relevance of the subject of research is determined by the need to develop and subsequently implement a mathematical model and the corresponding structural scheme of the convective heating surfaces of the TP-92 steam boiler. The purpose of this research work is to directly model the heat- -transfer system of the convective heating surfaces of this boiler, designed for effective use in real conditions. The basis of the methodological approach in the research work is a combination of methods of the system analysis of the key principles of constructing mathematical models of heat-transfer systems of modern steam boilers with an experimental study of the prospects for creating a mathematical model of a heat-transfer system of the convective heating surfaces of a TP-92 steam boiler. In the course of the study, the results were obtained and presented in the form of a mathematical model of a convective heat-transfer system. It allows for making effective mathematical calculations of the main operating modes of the TP-92 steam boiler and calculating the dependences of the temperature and thermal modes of its operation on the change of incoming parameters of the used heat carriers, changes in the heating surface area and the relative flow rate of the heat carriers over the time of their use. The results obtained in the study, including the conclusions formulated on their basis, are of significant practical importance for the designers of steam boilers. The results also are useful for maintenance personnel, whose immediate responsibilities include determining the real possibilities of improving the convective heat-transfer system, based on the known parameters of the temperature of the coolant at the entrance to the system and at the exit from it.
Go to article

Authors and Affiliations

Taras Kravets
1
ORCID: ORCID
Igor Galyanchuk
1
Oksana Yurasova
1
Andrii Kapustianskyi
2
Kateryna Romanova
3

  1. Department of Heat Engineering and Thermal and Nuclear Power Plants, Lviv Polytechnic National University, Ukraine
  2. Thermal Mechanical Department, JSC “Tekhenergo”, Ukraine
  3. Department of Heat Engineering, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute"

This page uses 'cookies'. Learn more