Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 14
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The resistance parameters of timber structures decrease with time. It depends on the type of load and timber classes. Strength reduction effects, referred to as creep-rupture effects, due to long term loading at high stress ratio levels are known for many materials. Timber materials are highly affected by this reduction in strength with duration of load. Characteristic values of load duration and load duration factors are calibrated by means of using probabilistic methods. Three damage accumulation models are considered, that is Gerhard [1] model, Barret, Foschi[2] and Foshi Yao [3] models. The reliability is estimated by means of using representative short- and long-term limit states. Time variant reliability aspects are taken into account using a simple representative limit state with time variant strength and simulation of whole life time load processes. The parameters in these models are fitted by the Maximum Likelihood Methods using the data relevant for Polish structural timber. Based on Polish snow data over 45 years from mountain zone in: Zakopane – Tatra, Świeradów – Karkonosze, Lesko – Bieszczady, the snow load process parameters have been estimated. The reliability is evaluated using representative short – and long –term limit states, load duration factor kmod is obtained using the probabilistic model.

Go to article

Authors and Affiliations

T. Domański
Download PDF Download RIS Download Bibtex

Abstract

Wola Justowska has long been thought of as the most attractive urban villa district of Krakow. A timber church from the XVI century that had originally been built in Komorowice Śląskie was relocated here in the year 1948, subsequently burning down a fire in 1978 in unknown circumstances. It had been rebuilt soon after, only to be set on fire a second time in 2002. After discussing numerous ideas and locations of its reconstruction, the design team developed a final version of its design, which featured the reconstruction of the church in its original location – in accordance with the will of the residents of Wola – which had been preceded by appropriate landscape analyses. The design calls for the reconstruction of the timber church in a slightly modified manner and placing it upon a concrete plinth, which is to be partially sheltered by the varied terrain around it. The aim of this idea was similar to that of the initial reconstruction, namely, to reconcile the form of the historical building that is to be reconstructed with the modern needs of the parish.

Go to article

Authors and Affiliations

Aleksander Böhm
Download PDF Download RIS Download Bibtex

Abstract

Biskupin is one of the most recognizable archaeological site in Poland and Central Europe. The origins of the excavations dates back to year 1934 and had lasted almost continuously until 1974. In the framework of the grant from the Ministry of Culture and National Heritage interdisciplinary team of scientists from Archaeological Museum in Biskupin and Warsaw University of Technology performed multi-dimensional analysis of the settlement. Based on the integrated vector documentation, resulting from the photographic documentation, numerical models of structural systems of main types of buildings and defensive rampart were prepared. The aim of the analysis was a verification of the earlier findings of archaeological and architectural researches. The analysis allowed to verify both the arrangement of individual parts of structure of buildings, their work and the interconnection, as well as the possible dimensions of the individual components.

Go to article

Authors and Affiliations

Wojciech Terlikowski
ORCID: ORCID
Martyna Gregoriou-Szczepaniak
ORCID: ORCID
Ewa Sobczyńska
ORCID: ORCID
Kacper Wasilewski
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the results of the static work analysis of laminated veneer lumber (LVL) beams strengthened with carbon fabric sheets (CFRP). Tested specimens were 45mm wide, 100 mm high, and 1700 mm long. Two types of strengthening arrangements were assumed as follows: 1. One layer of sheet bonded to the bottom face; 2. U-shape half-wrapped reinforcement; both sides wrapped to half of the height of the cross-section. The reinforcement ratios were 0.22% and 0.72%, respectively. In both cases, the FRP reinforcement was bonded along the entire span of the element by means of epoxy resin. The reinforcement of the elements resulted in an increase in the bending strength by 30% and 35%, respectively, as well as an increase in the global modulus of elasticity in bending greater than 20% for both configurations (in comparison to the reference elements).

Go to article

Authors and Affiliations

M. Bakalarz
P.G. Kossakowski
Download PDF Download RIS Download Bibtex

Abstract

In the Upper Silesian Coal Basin (Poland), numerous former workings have been left unprotected after the liquidation of mines in the 19th and the beginning of the 20th century. The workings have been located at low depths. The paper presents the results of strength tests of wood samples acquired from linings in former workings, and the obtained results have been compared to the results achieved in tests of samples of wood intended to be used in a reconstruction of a historic gallery. The tests consisted in determining the bending strength of wood in compliance with the applicable Polish standard. The results showed that the wood from historic mines was characterised by high variability of bending strength – usually much lower than that of the wood intended for construction. Too low bending strength of timber may result in caving in shallow excavation and lead to sinkhole creation on the surface.
Go to article

Authors and Affiliations

Piotr Strzałkowski
1
ORCID: ORCID
Grzegorz Dyduch
1
ORCID: ORCID

  1. Silesian University, Faculty of Mining, Safety Engineering and Industrial Automation, 2 Akademicka Str., 44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper attempts to assess the extent of crop loss in rubber plantations in India, measured in terms of loss in latex and timber output and thereby to examine the comparative economics of plant protection measures against Phytophtora spp. induced abnormal leaf fall (ALF). The specific objectives were: a) to examine the extent of loss in latex and timber output in unsprayed plots vis-a-vis sprayed plots across prominent rubber clones; b) estimate the value of loss in latex and timber output across clones between sprayed and unsprayed plots; c) examine the comparative economics of plant protection measures in terms of the incremental costs and the incremental returns from sprayed plots across clones; and d) reflect upon the policy imperatives with respect to region specific Research and Development (R&D) interventions on plant protection measures in India. The study brings out significant clonal differences in loss of latex and timber output in the absence of prophylactic spraying against ALF. The observed clonal differences with respect to feasibility of plant disease control measures indicate the need for region and clone-specific recommendations for plant protection measures in India instead of the currently followed unilateral prescription with due allowance to the costs and potential benefit accrued from the control measures. The study also highlight the need for evolving interventions and agro-management/ plant protection measures for minimising the incidence of tree casualty in rubber plantation, as it amounts to loss of potential income from latex and timber from rubber plantations in India, dominated by the smallholder sector

Go to article

Authors and Affiliations

Pozhamkandath K. Viswanathan
Tharian George Kadavil
Chakkasseril Kuruvilla Jacob
Download PDF Download RIS Download Bibtex

Abstract

In Eurocode 5, the stiffness equation for bolted steel-wood-steel is stated as a function ofwood density and fastener diameter only. In this research, an experimental study on various configurations of tested bolted steel-wood-steel (SWS) connections has been undertaken to predict the initial stiffness of each connection. In order to validate the Eurocode 5 stiffness equation, tests on 50 timber specimens (40 glued laminated timbers and 10 laminated veneer lumbers (LVL)) with steel plates were undertaken. The number of bolts was kept similar and the connector diameter, timber thickness, and wood density were varied. The results obtained in the experimental tests are compared with those obtained from the Eurocode 5 stiffness equation. From the analysis, it is signified that the stiffness equation specified in Eurocode 5 for bolted SWS connections does not adequately predict the initial stiffness. The results from Eurocode 5 stiffness equation are very far from the experimental values. The ratio of stiffness equation to experimental results ranges from 3.48 to 4.20, with the average at 3.77, where the equation overpredicted the experimental stiffness value for the connection. There is a need to consider or incorporated other parameters such as geometric configurations in Eurocode 5 stiffness equation to improve the ratio with the experimental data.
Go to article

Authors and Affiliations

Nur Liza Rahim
1 2
ORCID: ORCID
Gary Raftery
3
ORCID: ORCID
Pierre Quenneville
3
ORCID: ORCID
Doh Shu Ing
4
ORCID: ORCID
Marcin Nabiałek
5
ORCID: ORCID
Ramadhansyah Putra Jaya
4 6
ORCID: ORCID
Norlia Mohamad Ibrahim
1 7
ORCID: ORCID
Mohd Mustafa Al Bakri Abdullah
8 6
ORCID: ORCID
Agata Śliwa
9
ORCID: ORCID

  1. University Malaysia Perlis, Faculty of Civil Engineering Technology, 02600 Arau Perlis, Malaysia
  2. 2Sustainable Environment Research Group (SERG), Centre of Excellence Geopolymer and Green Technology (CEGeoGTech), University Malaysia Perlis (UniMAP), 01000 Kangar Perlis, Malaysia
  3. University of Auckland, Faculty of Civil Engineering, Department of Civil and Environmental Engineering, Auckland, New Zealand
  4. Department of Civil Engineering, College of Engineering, University Malaysia Pahang, 26300 Gambang Kuantan, Pahang Malaysia
  5. Czestochowa University of Technology, Czestochowa, Poland
  6. Centre of Excellence Geopolymer and Green Technology (CEGeoGTech), University Malaysia Perlis (UniMAP), 01000 Kangar Perlis, Malaysia
  7. Sustainable Environment Research Group (SERG), Centre of Excellence Geopolymer and Green Technology (CEGeoGTech), University Malaysia Perlis (UniMAP), 01000 Kangar Perlis, Malaysia
  8. University Malaysia Perlis, Faculty of Chemical Engineering Technology, 02600 Arau Perlis, Malaysia
  9. Division of Materials Processing Technology and Computer Techniques in Materials Science, Silesian University of Technology, 44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of experimental tests on the reinforcement of bent laminated veneer lumber beams with carbon fibre reinforced polymer (CFRP) strips glued to the bottom of elements. CFRP strips (1.4×43×2800 mm) were glued to the beams by means of epoxy resin. The tests were performed on full-size components with nominal dimensions of 45×200×3400 mm. Static bending tests were performed in a static scheme of the so-called four-point bending. The increase in the load bearing capacity of the reinforced elements (maximum bending moment and loading force) was 38% when compared to reference beams. A similar increase was noted in relation to the deflection of the elements at maximum loading force. For the global stiffness coefficient in bending, the increase for reinforced beams was 21%. There was a change in the way elements were destroyed from brittle, sudden destruction for reference beams resulting from the exhaustion of tensile strength to more ductile destruction initiated in the compressive zone for reinforced beams. The presented method can be applied to existing structures.
Go to article

Bibliography


[1] A. Borri, M. Corradi, “Strengthening of timber beams with high strength steel cords”, Composites: Part B, vol. 42, no. 6, pp. 1480–1491, 2011. https://doi.org/10.1016/j.compositesb.2011.04.051
[2] A. Borri, M. Corradi, A. Grazini, “A method for flexural reinforcement of old wood beams with CFRP materials”, Composites: Part B, vol. 36, no. 2, pp. 143–153, 2005. https://doi.org/10.1016/j.compositesb.2004.04.013
[3] A. D’Ambrisi, F. Focacci, R. Luciano, “Experimental investigation on flexural behavior of timber beams repaired with CFRP plates”, Composite Structures, vol. 108, pp. 720–728, 2014. https://doi.org/10.1016/j.compstruct.2013.10.005
[4] A. De Jesus, J. Pinto, J. Morais, “Analysis of solid wood beams strengthened with CFRP laminates of distinct lengths”, Construction and Building Materials, vol. 35, pp. 817–828, 2012. https://doi.org/10.1016/j.conbuildmat.2012.04.124
[5] B. Anshari, Z.W. Guan, A. Kitamori, K. Jung, K. Komatsu, “Structural behaviour of glued laminated timber beams pre-stressed by compressed wood”, Construction and Building Materials, vol. 29, pp. 24–32, 2012. https://doi.org/10.1016/j.conbuildmat.2011.10.002
[6] E.R. Thorhallsson, G.I. Hinriksson, J.T. Snæbj€ornsson, “Strength and stiffness of glulam beams reinforced with glass and basalt fibres”, Composites: Part B, vol. 115, pp. 300–307, 2016. https://doi.org/10.1016/j.compositesb.2016.09.074
[7] F.H. Theakston, “A feasibility study for strengthening timber beams with fiberglass”, Canadian agricultural engineering, 1965, pp. 17-19.
[8] G.M. Raftery, A.M. Harte, “Low-grade glued laminated timber reinforced with FRP plate”, Composites: Part B, vol. 42, no. 4, pp. 724–735, 2011. https://doi.org/10.1016/j.compositesb.2011.01.029
[9] G.M. Raftery, F. Kelly, “Basalt FRP rods for reinforcement and repair of timber”, Composites: Part B, vol. 70, pp. 9–19, 2015. https://doi.org/10.1016/j.compositesb.2014.10.036
[10] H. Gezer, B. Aydemir, “The effect of the wrapped carbon fiber reinforced polymer material on fir and pine woods”, Materials and Design, vol. 31, no. 7, pp. 3564–3567, 2010. https://doi.org/10.1016/j.matdes.2010.02.031
[11] H. Yang, D. Ju, W. Liu, W. Lu, “Prestressed glulam beams reinforced with CFRP bars”, Construction and Building Materials, vol. 109, pp. 73–83, 2016. https://doi.org/10.1016/j.conbuildmat.2016.02.008
[12] H. Yang, W. Liu, W. Lu, S. Zhu, Q. Geng, “Flexural behavior of FRP and steel reinforced glulam beams, Experimental and theoretical evaluation”, Construction and Building Materials, vol. 106, pp. 550–563, 2016. https://doi.org/10.1016/j.conbuildmat.2015.12.135
[13] I. Glišović, B. Stevanović, M. Todorović, T. Stevanović, “Glulam beams externally reinforced with CFRP plates”, Wood research, vol. 61, no. 1, pp. 141–154, 2016.
[14] J.A. Balmori, L.A. Basterra, L. Acuña, “Internal GFRP Reinforcement of Low-Grade Maritime Pine Duo Timber Beams”, Materials, vol. 13, no. 3, 571, 2020. https://doi.org/10.3390/ma13030571
[15] J. Soriano, B.P. Pellis, N.T. Mascia, “Mechanical performance of glued-laminated timber beams symmetrically reinforced with steel bars”, Composite Structures, vol. 150, pp. 200–207, 2016. https://doi.org/10.1016/j.compstruct.2016.05.016
[16] K. Andor, A. Lengyel, R. Polgár, T. Fodor, Z. Karácsonyi, “Experimental and statistical analysis of spruce timber beams reinforced with CFRP fabric”, Construction and Building Materials, vol. 99, pp. 200–207, 2015. https://doi.org/10.1016/j.conbuildmat.2015.09.026
[17] L.A. Basterra, J.A. Balmori, L. Morillas, L. Acuña, M. Casado, “Internal reinforcement of laminated duo beams of low-grade timber with GFRP sheets”, Construction and Building Materials, vol. 154, pp. 914–920, 2017. https://doi.org/10.1016/j.conbuildmat.2017.08.007
[18] L. Rudziński, “Konstrukcje drewniane. Naprawy, wzmocnienia, przykłady obliczeń”, Skrypt Politechniki Świętokrzyskiej, Kielce, 2010.
[19] L. Ye, B. Wang, P. Shao, “Experimental and Numerical Analysis of a Reinforced Wood Lap Joint”, Materials, vol. 13, no. 18, 4117, 2020. https://doi.org/10.3390/ma13184117
[20] M. Bakalarz, P. Kossakowski, “Mechanical Properties of Laminated Veneer Lumber Beams Strengthened with CFRP Sheets”, Archives of Civil Engineering, vol. 65, no. 2, pp. 57–66, 2019. https://doi.org/10.2478/ace-2019-0018
[21] M. Bakalarz, P. Kossakowski, “The flexural capacity of laminated veneer lumber beams strengthened with AFRP and GFRP sheets”, Technical Transactions, vol. 2, pp. 85–95, 2019. https://doi.org/10.4467/2353737XCT.19.023.10159
[22] M.M. Bakalarz, P.G. Kossakowski, P. Tworzewski, “Strengthening of Bent LVL Beams with Near-Surface Mounted (NSM) FRP Reinforcement”, Materials, vol. 13, no. 10, pp. 1–12, 2020. https://doi.org/10.3390/ma13102350
[23] M. Corradi, A. Borri, “Fir and chestnut timber beams reinforced with GFRP pultruded elements”, Composites: Part B, vol. 38, no. 2, pp. 172–181, 2007. https://doi.org/10.1016/j.compositesb.2006.07.003
[24] M. Dudziak, I. Malujda, K. Talaśka, T. Łodygowski, W. Sumelka, “Analysis of the process of wood plasticization by hot rolling”, Journal of Theoretical and Applied Mechanics, vol. 54, no. 2, pp. 503–516, 2016. https://doi.org/10.15632/jtam-pl.54.2.503
[25] M. Fossetti, G. Minafò, M. Papia, “Flexural behaviour of glulam timber beams reinforced with FRP cords”, Construction and Building Materials, vol. 95, pp. 54-64, 2015. https://doi.org/10.1016/j.conbuildmat.2015.07.116
[26] P. De La Rosa, A. Cobo, M.N. González García, “Bending reinforcement of timber beams with composite carbon fiber and basalt fiber materials”, Composites: Part B, vol. 55, pp. 528–536, 2013. https://doi.org/10.1016/j.compositesb.2013.07.016
[27] P. De La Rosa García, A.C. Escamilla, M.N. González García, “Analysis of the flexural stiffness of timber beams reinforced with carbon and basalt composite materials”, Composites: Part B, vol. 86, pp. 152–159, 2016. https://doi.org/10.1016/j.compositesb.2015.10.003
[28] P.G. Kossakowski, “Influence of anisotropy on the energy release rate GI for highly orthotropic materials”, Journal of Theoretical and Applied Mechanics, vol. 45, no. 4, pp. 739–752, 2007.
[29] PN-EN 14374:2005 Timber Structures. Structural Laminated Veneer Lumber (LVL). Requirements, Polish Standards Committee: Warsaw, Poland, 2005.
[30] PN-EN 1995-1-1:2010 Eurocode 5, Design of timber structures. Part 1-1: General. Common rules and rules for buildings, Polish Standards Committee: Warsaw, Poland, 2010.
[31] PN-EN 408+A1:2012 Timber Structures. Structural Timber and Glued Laminated Timber. Determination of Some Physical and Mechanical Properties, Polish Standards Committee: Warsaw, Poland, 2012.
[32] PN-EN 527-1:2012 Plastics. Determination of tensile properties. Part 1: General principles, Polish Standards Committee: Warsaw, Poland, 2013.
[33] PN-EN 527-5:2010 Plastics. Determination of tensile properties. Part 5: Test conditions for unidirectional fibre-reinforced plastic composites, Polish Standards Committee: Warsaw, Poland, 2010.
[34] T.P. Nowak, J. Jasieńko, D. Czepiżak, “Experimental tests and numerical analysis of historic bent timber elements reinforced with CFRP strips”, Construction and Building Materials, vol. 40, pp. 197–206, 2013. https://doi.org/10.1016/j.conbuildmat.2012.09.106
[35] V. De Luca, C. Marano, “Prestressed glulam timbers reinforced with steel bars”, Construction and Building Materials, vol. 30, pp. 206–217, 2012. https://doi.org/10.1016/j.conbuildmat.2011.11.016
[36] Y. Nadir, P. Nagarajan, M. Ameen, M. Arif M, “Flexural stiffness and strength enhancement of horizontally glued laminated wood beams with GFRP and CFRP composite sheets”, Construction and Building Materials, vol. 112, pp. 547–555, 2016. https://doi.org/10.1016/j.conbuildmat.2016.02.133
[37] Y.-F. Li, M.-J. Tsai, T.-F. Wei, W.-C. Wang, “A study on wood beams strengthened by FRP composite materials”, Construction and Building Materials, vol. 62, pp. 118–125, 2014. https://doi.org/10.1016/j.conbuildmat.2014.03.036
[38] Y.-F. Li, Y.-M. Xie, M.-J. Tsai, “Enhancement of the flexural performance of retrofitted wood beams using CFRP composite sheets”, Construction and Building Materials, vol. 23, pp. 411–422, 2009. https://doi.org/10.1016/j.conbuildmat.2007.11.005
[39] Z.W. Guan, P.D. Rodd, D.J. Pope, “Study of glulam beams pre-stressed with pultruded GRP”, Computers and Structures, vol. 83, pp. 2476–2487, 2005. https://doi.org/10.1016/j.compstruc.2005.03.021
Go to article

Authors and Affiliations

Michał Bakalarz
1
ORCID: ORCID

  1. Kielce University of Technology, Faculty of Civil Engineering and Architecture, Al. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland
Download PDF Download RIS Download Bibtex

Abstract

Due to the ongoing climate change, the issues currently in focus are the reduction of CO2 emissions into the atmosphere and sustainable construction. The search for ecological alternatives to traditional building structures that will reduce a building’s carbon footprint seems to be a desirable direction of modern construction development. At present, the first projects of office buildings that use cross-laminated timber as the main construction material are being completed, which can have a positive impact not only on the environment but also on the users of the building.
Go to article

Authors and Affiliations

Aleksander Janicki
1
ORCID: ORCID

  1. Cracow University of Technology, Faculty of Architecture
Download PDF Download RIS Download Bibtex

Abstract

Archaeological and living tree data were used to construct tree-ring chronologies over the medieval (AD 1183–1430) and recent (AD 1812–2020) periods in Turku, which is historically an important population centre in Southwest Finland and the country. Comparisons between the two tree-ring assemblages, and between the previously built chronologies from the Åland (historical timber) and Tavastia (lacustrine subfossils and living trees) sites, provided ways of understanding the growth patterns and their linkages to climatic, environmental, and edaphic factors. Tree growth in and around Turku was affected by warm-season precipitation and winter temperature. Similar relationships were previously evident also in the Åland tree rings, whereas the data from a wetter Tavastia site did not exhibit similar precipitation signal. The site conditions influence also the correlations which are higher between Turku and Åland than between Turku and Tavastia chronologies. Construction of long continuous chronology is impaired by human-related activities, the Great Fire of Turku in 1827 and logging, which have diminished the availability of dead and living-tree materials, respectively. These conditions lead to hardships of filling the gap between the medieval and recent periods and updating the archaeological datasets with compatible living-tree data, which are both demonstrated by our results.
Go to article

Authors and Affiliations

Samuli Helama
1
Tanja Ratilainen
2
Juha Ruohonen
3
Jussi-Pekka Taavitsainen
3

  1. Natural Resources Institute Finland
  2. Turku Museum Center, Turku, Finland
  3. Department of Archaeology, University of Turku, Turku, Finland
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a study of laminated veneer lumber panels subjected to bending. Laminated veneer lumber (LVL) is a sustainable building material manufactured by laminating 3-4-mm-thick wood veneers, using adhesives. The authors of this article studied the behaviour of type R laminated veneer lumber (LVL R), in which all veneers are glued together longitudinally – along the grain. Tensile, compressive and bending tests of LVL R were conducted. The short-term behaviour, load carrying-capacity, mode of failure and load-deflection of the LVL R panels were investigated. The authors observed failure modes at the collapse load, associated with the delamination and cracking of veneer layers in the tensile zone. What is more, two non-linear finite element models of the tested LVL R panel were developed and verified against the experimental results. In the 3D finite element model, LVL R was described as an elastic-perfectly plastic material. In the 2D finite element model, on the other hand, it was described as an orthotropic material and its failure was captured using the Hashin damage model. The comparison of the numerical and experimental analyses demonstrated that the adopted numerical models yielded the results similar to the experimental results.
Go to article

Bibliography

[1] A. M. Harte, “Timber engineering: an introduction”, in ICE Manual of Construction Materials: Volume I/II: Fundamentals and theory; Concrete; Asphalts in road construction; Masonry, M. Forde, Ed., ICE Publishing, Chapter 60, 2009.
[2] A. Karolak, J. Jasieńko and R. Raszczuk, “Historical scarf and splice carpentry joints: state of the art”, Heritage Science, vol. 8, article number 105, 2020. https://doi.org/10.1186/s40494-020-00448-2
[3] P. Witomski, A. Krajewski and P. Kozakiewicz, “Selected mechanical properties of Scots pine wood from antique churches of Central Poland”, European Journal of Wood and Wood Products, vol. 72, pp. 293–296, 2014. https://doi.org/10.1007/s00107-014-0783-y
[4] E. Kotwica and S. Krzosek, “Timber bridges – revive of old and new bridges built in Switzerland”, Annals of Warsaw University of Life Sciences – SGGW, Forestry and Wood Technology, vol. 92, pp. 207-210, 2015.
[5] B. Franke, S. Franke, A. Müller, M. Vogel, F. Scharmacher and T. Tannert, “Long term monitoring of timber bridges – Assessment and results”, Advanced Materials Research, vol. 778, pp. 749–756, 2013. https://doi.org/10.4028/www.scientific.net/AMR.778.749
[6] T. Alapieti, R. Mikkola, P. Pasanen and H. Salonen, “The influence of wooden interior materials on indoor environment: a review”, European Journal of Wood and Wood Products, vol. 78, pp. 617–634, 2020. https://doi.org/10.1007/s00107-020-01532-x
[7] A. Bragov, L. Igumnov, F. dell’Isola, A. Konstantinov, A. Lomunov and T. Iuzhina, “Dynamic testing of lime-tree (Tilia Europoea) and pine (Pinaceae) for wood model identification”, Materials, vol. 13, no. 22, article 5261, 2020. https://doi.org/10.3390/ma13225261
[8] P. G. Kossakowski, “Influence of anisotropy on the energy release rate GI for highly orthotropic materials”, Journal of Theoretical and Applied Mechanics, vol. 45, no. 4, pp. 739–752, 2007.
[9] P. G. Kossakowski, “Fracture toughness of pine wood for I and II loading modes”, Archives of Civil Engineering, vol. 54, no. 3, pp. 509–529, 2008.
[10] P. G. Kossakowski, “Mixed mode I/II fracture toughness of pine wood”, Archives of Civil Engineering, vol. 55, no. 2, pp. 199–227, 2009.
[11] M. Szumigała, E. Szumigała and Ł. Polus, “Laboratory tests of new connectors for timber-concrete composite structures”, Engineering Transactions, vol. 66, no. 2, pp. 161–173, 2018.
[12] M. Fragiacomo and E. Łukaszewska, “Time-dependent behaviour of timber-concrete composite floors with prefabricated concrete slabs”, Engineering Structures, vol. 52, pp. 687–696, 2013. https://doi.org/10.1016/j.engstruct.2013.03.031
[13] A. Dias, J. Skinner, K. Crews and T. Tannert, “Timber-concrete-composites increasing the use of timber in construction”, European Journal of Wood and Wood Products, vol. 74, no. 3, pp. 443–451. 2016. https://doi.org/10.1007/s00107-015-0975-0
[14] N. Khorsandnia, H. R. Valipour and K. Crews, “Experimental and analytical investigation of short-term behavior of LVL-concrete composite connections and beams”, Construction and Building Materials, vol. 37, pp. 229–238, 2012. https://doi.org/10.1016/j.conbuildmat.2012.07.022
[15] P. Kyvelou, L. Gardner and D. A. Nethercot, “Testing and analysis of composite cold-formed steel - wood-based flooring systems”, Journal of Structural Engineering, vol. 143, no. 11, 2017. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001885
[16] A. Hassanieh, H. R. Valipour and M. A. Bradford, “Experimental and numerical study of steel-timber composite (STC) beams”, Journal of Constructional Steel Research, vol. 122, pp. 367–378, 2016. https://doi.org/10.1016/j.jcsr.2016.04.005
[17] M. Chybiński and Ł. Polus, “Theoretical, experimental and numerical study of aluminium-timber composite beams with screwed connections”, Construction and Building Materials, vol. 226, pp. 317–330. 2019. https://doi.org/10.1016/j.conbuildmat.2019.07.101
[18] S. M. Saleh and N. A. Jasim, “Structural behavior of timber aluminum composite beams under static loads”, International Journal of Research in Engineering and Technology, vol. 3, no. 10, pp. 1166–1173, 2014.
[19] M. Szumigała, M. Chybiński and Ł. Polus, “Preliminary analysis of the aluminium-timber composite beams”, Civil and Environmental Engineering Reports, vol. 27, no. 4, pp. 131–141, 2017. https://doi.org/10.1515/ceer-2017-0056
[20] C. Bedon and M. Fragiacomo, “Numerical analysis of timber-to-timber joints and composite beams with inclined self-tapping screws”, Composite Structures, vol. 207, pp. 13–28, 2019. https://doi.org/10.1016/j.compstruct.2018.09.008
[21] G. Schiro, I. Giongo, W. Sebastian, D. Riccadonna and M. Piazza, “Testing of timber-to-timber screw-connections in hybrid configurations”, Construction and Building Materials, vol. 171, pp. 170–186, 2018. https://doi.org/10.1016/j.conbuildmat.2018.03.078
[22] K. Furtak and K. Rodacki, “Experimental investigations of load-bearing capacity of composite timber-glass I-beams”, Archives of Civil and Mechanical Engineering, vol. 18, no. 3, pp. 956–964, 2018. https://doi.org/10.1016/j.acme.2018.02.002
[23] M. Kozłowski, M. Kadela and J. Hulimka, “Numerical investigation of structural behavior of timber-glass composite beams”, Procedia Engineering, vol. 161, pp. 78–89, 2016. https://doi.org/10.1016/j.proeng.2016.08.838
[24] P. Rapp, “Application of adhesive joints in reinforcement and reconstruction of weakened wooden elements loaded axially”, Drewno, vol. 59, no. 196, pp. 59–73, 2016. https://doi.org/10.12841/wood.1644-3985.128.05
[25] P. Rapp, “The numerical modeling of adhesive joints in reinforcement of wooden elements, subjected to bending and shearing”, Drewno, vol. 60, no. 199, pp. 21–36, 2017. https://doi.org/10.12841/wood.1644-3985.192.02
[26] I. Burawska, M. Zbieć, A. Tomusiak and P. Beer, “Local reinforcement of timber with composite and lignocellulosic materials”, BioResources, vol. 10, 457–468, 2015.
[27] M. Dudziak, I. Malujda, K. Talaśka, T. Łodygowski and W. Sumelka, “Analysis of the process of wood plasticization by hot rolling”, Journal of Theoretical and Applied Mechanics, vol. 54, no. 2, pp. 503–516. 2016. https://doi.org/10.15632/jtam-pl.54.2.503
[28] M. Wieruszewski, G. Gołuński, G. J. Hruzik and V. Gotych, “Glued elements for construction”, Annals of Warsaw University of Life Sciences – SGGW Forestry and Wood Technology, vol. 72, pp. 453–458, 2010.
[29] J. Porteous and A. Kermani, “Structural Timber Design to Eurocode 5”, 2nd ed., Chichester: Wiley-Blackwell, 2013.
[30] P. Dietsch and T. Tannert, “Assessing the integrity of glued-laminated timber elements”, Construction and Building Materials, vol. 101, no. 2, pp. 1259–1270, 2015. https://doi.org/10.1016/j.conbuildmat.2015.06.064
[31] R. Mirski, D. Dziurka, M. Chuda-Kowalska, M. Wieruszewski, J. Kawalerczyk and A. Trociński, “The usefulness of pine timber (Pinus sylvestris L.) for the production of structural elements. Part I: Evaluation of the quality of the pine timber in the bending test”, Materials, vol. 13, article 3957, 2020. https://doi.org/10.3390/ma13183957
[32] R. Mirski, D. Dziurka, M. Chuda-Kowalska, J. Kawalerczyk, M. Kuliński and K. Łabęda, “The usefulness of pine timber (Pinus sylvestris L.) for the production of structural elements. Part II: Strength properties of glued laminated timber”, Materials, vol. 13, article 4029, 2020. https://doi.org/10.3390/ma13184029
[33] R. Brandner, A. Ringhofer and T. Reichinger, “Performance of axially-loaded self-tapping screws in hardwood: Properties and design”, Engineering Structures, vol. 188, pp. 677–699, 2019. https://doi.org/10.1016/j.engstruct.2019.03.018
[34] T. Gečys, G. Šaučiuvėnas, L. Ustinovichius, C. Miedzialowski and P. Sulik, “Surface based cohesive behavior implementation for the strength analysis of glued-in threaded rods in glulam”, Bulletin of the Polish Academy of Sciences Technical Sciences, vol. 68, no. 5, pp. 1149–1157, 2020. https://doi.org/10.24425/bpasts.2020.134665
[35] R. Brandner, “Production and technology of cross laminated timber (CLT): State-of-the-art report”, in European Conference on Cross Laminated Timber, R. Harris, A. Ringhofer and G. Schickhofer, Eds., Graz: Graz University of Technology, 2013, pp. 3–36.
[36] M. Jeleč, D. Varevac and V. Rajčić, “Cross-laminated timber (CLT) – a state of the art report”, Građevinar, vol. 70, no. 2, pp. 75–95, 2018. https://doi.org/10.14256/JCE.2071.2017
[37] O. Espinoza, V. R. Trujillo, M. F. Laguarda and U. Buehlmann, “Cross-laminated timber: Status and research needs in Europe”, BioResources, vol. 11, pp. 281–295, 2016.
[38] A. Ringhofer, R. Brandner and H. J. Blaß, “Cross laminated timber (CLT): Design approaches for dowel-type fasteners and connections”, Engineering Structures, vol. 171, pp. 849–861, 2018. https://doi.org/10.1016/j.engstruct.2018.05.032
[39] R. Brandner, A. Ringhofer and M. Grabner, “Probabilistic models for the withdrawal behavior of single self-tapping screws in the narrow face of cross laminated timber (CLT)”, European Journal of Wood and Wood Products, vol. 76, no. 1, pp. 13–30, 2018. https://doi.org/10.1007/s00107-017-1226-3
[40] T. Tannert, M. Follesa, M. Fragiacomo, P. González, H. Isoda, D. Moroder, H. Xiong and J. van de Lindt, “Seismic Design of Cross-laminated Timber Buildings”, Wood and Fiber Science, vol. 50, pp. 3–26, 2018.
[41] Z. Chena, Q. Lei, R. He, Z. Zhang, A. Jalal Khan Chowdhury, “Review on antibacterial biocomposites of structural laminated veneer lumber”, Saudi Journal of Biological Sciences, vol. 23, no. 1, pp. 142–147, 2016. https://doi.org/10.1016/j.sjbs.2015.09.025
[42] A. Özçifçi, “Effect of scarf joints on bending strength and modulus of elasticity to laminated veneer lumber (LVL)”, Building and Environment, vol. 42, pp. 1510–1514, 2007. https://doi.org/10.1016/j.buildenv.2005.12.024
[43] H. Ido, H. Nagao, H. Kato, A. Miyatake and Y. Hiramatsu, “Strength properties of laminated veneer lumber in compression perpendicular to its grain”, Journal of Wood Science, vol. 56, pp. 422–428, 2010. https://doi.org/10.1007/s10086-010-1116-3
[44] C. Pirvu, H. Yoshida and K. Taki, “Development of LVL frame structures using glued metal plate joints I: bond quality and joint performance of LVL-metal joints using epoxy resins”, Journal of Wood Science, vol. 45, pp. 284–290, 1999. https://doi.org/10.1007/BF00833492
[45] C. Pirvu, H. Yoshida, M. Inayama, M. Yasumura and K. Taki, “Development of LVL frame structures using glued metal plate joints II: strength properties and failure behavior under lateral loading”, Journal of Wood Science, vol. 46, pp. 193–201, 2000. https://doi.org/10.1007/BF00776449
[46] A. Özçifçi, “The effects of pilot hole, screw types and layer thickness on the withdrawal strength of screws in laminated veneer lumber”, Materials and Design, vol. 30, pp. 2355–2358, 2009. https://doi.org/10.1016/j.matdes.2008.11.001
[47] G. Celebi and M. Kilic, “Nail and screw withdrawal strength of laminated veneer lumber made up hardwood and softwood layers”, Construction and Building Materials, 21, pp. 894–900, 2007. https://doi.org/10.1016/j.conbuildmat.2005.12.015
[48] M. Dorn, K. Habrová, R. Koubek and E. Serrano, “Determination of coefficients of friction for laminated veneer lumber on steel under high pressure loads”, Friction, 2020. https://doi.org/10.1007/s40544-020-0377-0
[49] C. Y. C. Purba, G. Pot, J. Viguier, J. Ruelle and L. Denaud, “The influence of veneer thickness and knot proportion on the mechanical properties of laminated veneer lumber (LVL) made from secondary quality hardwood”, European Journal of Wood and Wood Products, vol. 77, pp. 393–404, 2019. https://doi.org/10.1007/s00107-019-01400-3
[50] P. Berard, P. Yang, H. Yamauchi, K. Umemura and S. Kawai, “Modeling of a cylindrical laminated veneer lumber I: mechanical properties of hinoki (Chamaecyparis obtusa) and the reliability of a nonlinear finite elements model of a four-point bending test”, Journal of Wood Science, vol. 57, pp. 100–106, 2011. https://doi.org/10.1007/s10086-010-1150-1
[51] Y.-J. Song, S.-I. Hong, J.-S. Suh and S.-B. Park, “Strength performance evaluation of moment resistance for cylindrical-LVL column using GFRP reinforced wooden pin”, Wood Research, vol. 62, no. 3, pp. 417–426, 2017.
[52] Z. Bednarek, D. Pieniak and P. Ogrodnik, “Wytrzymałość na zginanie i niezawodność kompozytu drewnianego LVL w warunkach podwyższonych temperatur”, Zeszyty Naukowe SGSP, vol. 40, pp. 5–17, 2010. (in Polish)
[53] M. Bakalarz and P. Kossakowski, “The flexural capacity of laminated veneer lumber beams strengthened with AFRP and GFRP sheets”, Technical Transactions, Civil Engineering, vol. 2, pp. 85–94, 2019. https://doi.org/10.4467/2353737XCT.19.023.10159
[54] M. Bakalarz and P. Kossakowski, “Mechanical properties of laminated veneer lumber beams strengthened with CFRP sheets”, Archives of Civil Engineering, vol. 65, no. 2, pp. 57–66, 2019. https://doi.org/10.2478/ace-2019-0018
[55] M. Bakalarz, P. Kossakowski and P. Tworzewski, “Strengthening of bent LVL beams with near-surface mounted (NSM) FRP reinforcement”, Materials, vol. 13, no. 10, article 2350, 2020. https://doi.org/10.3390/ma13102350
[56] B. Kawecki and J. Podgórski, “3D ABAQUS simulation of bent softwood elements”, Archives of Civil Engineering, vol. 66 no. 3, pp. 323–337, 2020. https://doi.org/10.24425/ace.2020.134400
[57] B. P. Gilbert, H. Bailleres, H. Zhang and R. L. McGavin, “Strength modelling of Laminated Veneer Lumber (LVL) beams”, Construction and Building Materials, vol. 149, pp. 763–777, 2017. https://doi.org/10.1016/j.conbuildmat.2017.05.153
[58] H. Valipour, N. Khorsandnia, K. Crews and S. Foster, “A simple strategy for constitutive modelling of timber”, Construction and Building Materials, vol. 53, pp. 138–148, 2014. https://doi.org/10.1016/j.conbuildmat.2013.11.100
[59] N. Khorsandnia, H. R. Valipour and K. Crews, “Nonlinear finite element analysis of timber beams and joints using the layered approach and hypoelastic constitutive law”, Engineering Structures, vol. 46, pp. 606–614, 2013. https://doi.org/10.1016/j.engstruct.2012.08.017
[60] M. Komorowski, “Manual of design and build in the STEICO system, Basic information, Building physics, Guidelines”, Warsaw: Forestor Communication, 2017. (in Polish)
[61] European Committee for Standardization, EN 1990, Eurocode 0, Basis of structural design, European Committee for Standardization, Brussels, Belgium, 2002.
[62] European Committee for Standardization, EN 408, Timber structures - Structural timber and glued laminated timber - Determination of some physical and mechanical properties; European Committee for Standardization: Brussels, Belgium, 2012.
[63] European Committee for Standardization, EN 13183-1, Moisture content of a piece of sawn timber - Part 1: Determination by oven dry method; European Committee for Standardization: Brussels, Belgium, 2004.
[64] Abaqus 6.13 Documentation, Abaqus Analysis Users Guide, Abaqus Theory Guide.
[65] H. T. Nguyen and S. E. Kim, “Finite element modeling of push-out tests for large stud shear connectors”, Journal of Constructional Steel Research, vol. 65, pp. 1909–1920, 2009. https://doi.org/10.1016/j.jcsr.2009.06.010
[66] M. P. Budziak and T. Garbowski, “Failure assessment of steel-concrete composite column under blast loading”, Engineering Transactions, vol. 62, no. 1, pp. 61–84, 2014.
[67] M. Sciomenta, L. Spera, C. Bedon, V. Rinaldi, M. Fragiacomo and M. Romagnoli, “Mechanical characterization of novel homogeneous beech and hybrid beech-corsican pine thin cross-laminated timber panels”, Construction and Building Materials, article 121589, 2020. https://doi.org/10.1016/j.conbuildmat.2020.121589
[68] Ł. Polus and M. Szumigała, “An experimental and numerical study of aluminium-concrete joints and composite beams”, Archives of Civil and Mechanical Engineering, vol. 19, no. 2, pp. 375–390, 2019. https://doi.org/10.1016/j.acme.2018.11.007
[69] A. Pełka-Sawenko, T. Wróblewski and M. Szumigała, “Validation of computational models of steel-concrete composite beams”, Engineering Transactions, vol. 64, no. 1, pp. 53–67, 2016.
[70] P. Szewczyk and M. Szumigała, “Welding deformation in a structure strengthened under load in an empirical-numerical study”, in Advances in Mechanics: Theoretical, Computational and Interdisciplinary Issues. Proceedings of the 3rd Polish Congress of Mechanics (PCM) and 21st International Conference on Computer Methods in Mechanics (CMM), Gdansk, Poland, 8-11 September 2015, M. Kleiber, T. Burczynski, K. Wilde, J. Gorski, K. Winkelmann and L. Smakosz, Eds., London: CRC Press, 2016, pp. 563–566.
[71] P. Szewczyk, “Wzmacnianie pod obciążeniem belek zespolonych stalowo-betonowych w eksperymencie numerycznym i fizycznym”, PhD thesis, West Pomeranian University of Technology in Szczecin, Poland, 2016. (in Polish)
[72] P. Różyło, “Stateczność i stany graniczne ściskanych cienkościennych profili kompozytowych”, Lublin: Wydawnictwo Politechniki Lubelskiej, 2019. (in Polish)
[73] P. Rozylo, “Failure analysis of thin-walled composite structures using independent advanced damage models”, Composite Structures, vol. 262, article 113598, 2021. https://doi.org/10.1016/j.compstruct.2021.113598
[74] A. B. Widodo, “Application of laminated veneer lumber (LVL) on the wooden boat construction”, IPTEK The Journal for Technology and Science, vol. 23, no. 1, pp. 8–14, 2012.
Go to article

Authors and Affiliations

Marcin Chybiński
1
ORCID: ORCID
Łukasz Polus
1
ORCID: ORCID

  1. Poznan University of Technology, Faculty of Civil and Transport Engineering, Piotrowo 5 Street, 60-965 Poznan, Poland
Download PDF Download RIS Download Bibtex

Abstract

The article discusses results of pull-off adhesion strength tests on poly-p- phenylene benzobisoxazole (PBO) mesh bonded to fir timber beams using epoxy resin. The tests were performed in accordance with the PN-EN 1542 standard. Timber elements reinforced with PBO fibres were subjected to pull-off tests to measure the adhesive strength of the mesh to the beams.The factors occurring during the test were also characterized, which may affect its results such as the method of application of the tearing force, selection of epoxy glue, surface preparation of the tested elements, occurrence of material defects in the wood and types of substrate destruction.The experimental data show that failure of the timber layer was not observed in all the specimens tested.

Go to article

Authors and Affiliations

P.K. Sokołowski
P.G. Kossakowski
Download PDF Download RIS Download Bibtex

Abstract

The article presents a comprehensive analysis of technology, time and costs of three methods of building a single-family house; traditional brick, reinforced concrete prefabrication and timber frame. The goal of this study was to determine if prefabricated and timber frame building methods and materials have the potential to replace traditional method of construction in the context of cost and time. For this purpose, a qualitative analysis was performed, including a list of benefits of each of the analysed construction technologies and a quantitative analysis in which the cost of finished houses per 1 m2 of usable area was compared. The analyses were conducted for two single-family houses with similar characteristics using scheduling and cost estimation software. The conducted analyses have shown that the shortest time to build a house is in the prefabricated reinforced concrete technology. The used construction technology from ready-made prefabricated elements affects the time of building house and thus, the costs of its construction. The construction time for the house in case of a timber frame structure and made of ready-made reinforced concrete prefabricated elements is similar but the cost of a timber frame structure is much higher. It takes longest time to build a house in traditional brick technology and requires the involvement of the largest financial resources from all three analysed construction technologies. Despite this, traditional brick technology is the most used in construction in Poland and other Central and Easter Europe countries. This is due to the widespread belief of investors about the durability of a building made in this technology and the habits of investors resulting from a long-standing tradition of construction. However, the study’s results in the world showed that a change in build technology is a step in addressing the concerns of poor quality and reduce construction costs and time, increasing the construction sector’s productivity and sustainability.
Go to article

Authors and Affiliations

Grzegorz Wrzesiński
1
ORCID: ORCID
Katarzyna Pawluk
1
ORCID: ORCID
Marzena Lendo-Siwicka
1
ORCID: ORCID
Jan Kowalski
1

  1. Warsaw University of Life Sciences, Institute of Civil Engineering, Nowoursynowska 159, 02-776 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a review of composite structures in which aluminium alloys are used. Current trends in the research of composite structures with aluminium girders and their possible applications in structural engineering were shown. In the presented solutions, advantageous properties of aluminium alloys were exploited, such as high strength-to-weight ratio, corrosion resistance and recyclability. The authors demonstrated the structural behaviour of aluminium-concrete and aluminiumtimber composite beams based on their own tests as well as investigations presented in the literature. Furthermore, aluminium-concrete composite columns, a composite mullion made of an aluminium alloy and timber, and a military bridge consisting of aluminium truss components, a stay-in-place-form, reinforcement and concrete were presented. In addition to the description of the structural elements, the main conclusions from their experimental, theoretical and numerical analyses were also demonstrated in this paper. The connection of aluminium girders with concrete or timber slabs provided for the increase of the load-bearing capacity and stiffness, and it eliminated the problem of local buckling in girder flanges and lateral-torsional buckling of girders in the analysed solutions.
Go to article

Authors and Affiliations

Marcin Chybiński
1
ORCID: ORCID
Łukasz Polus
1
ORCID: ORCID
Maciej Szumigała
1
ORCID: ORCID

  1. Poznan University of Technology, Faculty of Civil and Transport Engineering, Piotrowo 5 Street, 60-965 Poznan, Poland

This page uses 'cookies'. Learn more