Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Groundings are necessary parts included in lightning and shock protection. In the case of a surge current, high current phenomena are observed inside the grounding. They are result of the electrical discharges around the electrode when the critical field is exceeded in a soil. An available mathematical model of grounding was used to conduct computer simulations and to evaluate the influence of current peak value on horizontal grounding parameters in two cases. In the first simulations, electrode placed in two different soils were considered. The second case was a test of the influence of current peak value on grounding electrodes of various lengths. Simulation results show that as soil resistivity increases in value, the surge impedance to static resistance ratio decreases. In the case of grounding electrodes lengths, it was confirmed that there is a need to use an operating parameter named effective grounding electrode length, because when it is exceeded, the characteristics of grounding is not significantly improved during conductance of lightning surges. The mathematical model used in the paper was verified in a comparison with laboratory tests conducted by K.S. Stiefanow and with mathematical model described by L. Grcev.
Go to article

Bibliography

  1.  K. Aniserowicz, “Analytical calculations of surges caused by direct lightning strike to underground intrusion detection system” Bull. Pol. Acad. Sci. Tech. Sci. 67(2), 263‒269 (2019), doi: 10.24425/bpas.2019.128118.
  2.  S. Czapp and J. Guzinski, “Electric shock hazard in circuits with variable-speed drives”, Bull. Pol. Acad. Sci. Tech. Sci. 66(3) 361‒372 (2018), doi: 10.24425/123443.
  3.  G. Parise, L. Parise, and L. Martirano, “Intrinsically safe grounding systems and global grounding systems”, IEEE Trans. Ind. Appl. 54(1), 25‒31 (2018), doi: 10.1109/TIA.2017.2743074.
  4.  R.M. Miśkiewicz, P. Anczewski, and A. J. Morandowicz, “Analysis and investigations of inductive power transfer (IPT) systems in terms of efficiency and magnetic field distribution properties”, Bull. Pol. Acad. Sci. Tech. Sci. 67(4), 789‒797 (2019), doi: 10.24425/ bpasts.2019.130188.
  5.  S. Viscaro, “The use of the impulse impedance as a concise representation of grounding electrodes in lightning protection applications”, IEEE Trans. Electromagn. Compat. 60(5), 1602‒1605 (2018), doi: 10.1109/TEMC.2017.2788565.
  6.  K.S. Stiefanow, High Voltag Technique. 1st ed., Energy, pp. 380‒403, 1967. (orig.: К.С. Стефанов, Техника высоких напряжений, 1st ed, Энергия, pp. 380‒403, 1967).
  7.  L. Grcev, B. Markovski, V. Arnautovski-Toseva, and K.E.K. Drissi, “Transient analysis of grounding system without computer” in 2012 International Conference on Lightning Protection (ICLP), 2012, doi: 10.1109/ICLP.2012.6344412.
  8.  A. Geri, “Behaviour of grounding system exited by high impulse currents: the model and its validation”, IEEE Trans. Power Delivery 14(3), 1008‒1017 (1999), doi: 10.1109/61.772347.
  9.  S. Wojtas, “Ligtning impulse efficiency of horizontal earthings”, Electrical Review, 88(10b), 332‒334 (2012), [Online]. Available: pe.org. pl/abstract_pl.php?nid=6666 [Accessed: 13. Dec. 2020].
  10.  L. Grcev, “Modelling of grounding electrodes under lightning currents”, IEEE Trans. Electromagn. Compat. 51(3), 559‒571 (2009), doi: 10.1109/TEMC.2009.2025771.
  11.  J. Trifunovic and M.B. Kostic, “An alogirthm for estimating the grounding resistance of complex grounding systems including contact resistance”, IEEE Trans. Ind. Electron. 51(6), 5167‒5174 (2015), doi: 10.1109/TIA.2015.2429644.
  12.  D. Cavka, F. Rachidi, and D. Polijak, „On the concept of grounding impedance of multipoint grounding systems”, IEEE Electromagn. Compat. Mag. 56(6), 1540‒1544 (2014), doi: 10.1109/TEMC.2014.2341043.
  13.  R. Xiong, B. Chen Gao, Y. Yi, and W. Yang, “FDTD calculation model for tranient analyses of grounding systems”, IEEE Electromagn. Compat. Mag 56(5), 1155‒1162 (2014), doi: 10.1109/TEMC.2014.2313918.
  14.  A.F. Imece et al., “Modeling guidelines for fast front transients”, IEEE Trans. Power Delivery 11(1), 493‒506 (1996), doi: 10.1109/61.484134.
  15.  CIGRE, “Guide to procedures for estimating the lightning performance of transmission lines”, CIGRE Working Group 33.01 (Lightning) of Study Committee 33 (Overvoltage’s and Insulation Coordination), 1991. [Online]. Available: books.google.pl/books/about/Guide_to_ Procedures_for_Estimating_the_L.html?id=yFzqugAACAAJ&redir_esc=y [Accessed: 13. Dec. 2020].
  16.  M. Vasiliki and E. Pyrgioti, “Simulation of transient behavior of grounding grids” in 2010 International Conference on Lightning Protection (ICLP), 2010, doi: 10.1109/ICLP.2010.7845766.
  17.  A.G. Pedrosa, M.A. Schroeder, R.S. Alipio, and S. Visacro, “Influence of frequency dependant soil electrical parameters on the grounding response to lightning” in 2010 International Conference on Lightning Protection (ICLP), 2010, doi: 10.1109/ICLP.2010.7845953.
  18.  D.S. Gazzana, A.B. Trochoni, L.C. Leborgne, A.S. Betas, D.W.P Thomas, and C. Christopoulos, „An improved soil ionization representation to numerical simulation of impulsive grounding systems”, IEEE Trans. Magn. 54(3), 7200204 (2018), doi: 10.1109/TMAG.2017.2750019.
  19.  U.C. Resende, R. Alipio, and M. L.F. Oliviera, “Proposal for inclusion of the electrode radius in grounding systems analysis using interpolating element free Galerkin method”, IEEE Trans. Magn. 54(3), 7200304 (2018), doi: 10.1109/TMAG.2017.2771394.
  20.  M. Mokhtari and G.B. Gharehpetian, “Integration of energy balance of soil ionization in CIGRE grounding resistance model”, IEEE Electromagn. Compat. Mag. 60(2), 402‒413 (2018), doi: 10.1109/TEMC.2017.2731807.
  21.  O. Kherif, S. Chiheb, M. Teguar, A. Merkhaldi, and N. Harid, “Time-domain modeling of grounding systems’ impulse response incorporating nonlinear and frequency dependant aspects”, IEEE Electromagn. Compat. Mag. 60(4), 907‒916 (2018), doi: 10.1109/TEMC.2017.2751564.
  22.  S. Yang, W. Zhou, J. Huang, and J. Yu, “Investigation on impulse characteristics of full-scale grounding grid in substitution”, IEEE Electromagn. Compat. Mag. 60(6), 1993‒2001 (2018), doi: 10.1109/TEMC.2017.2762329.
  23.  E. Clavel, J. Roudet, J.M. Guichon, Z. Gouchiche, P. Joyeux, and A. Derbey, “A nonmashing approach for modeling grounding”, IEEE Electromagn. Compat. Mag. 60(3), 795‒802 (2018), doi: 10.1109/TEMC.2017.2743227.
  24.  R. Kosztaluk, M. Loboda, and D. Mukhedkar, „Experimental study of transient ground impedances”, IEEE Trans. Power Apparatus Syst. PAS-100(11), 4653‒4660 (1981), doi: 10.1109/TPAS.1981.316807.
  25.  F. Haidler and J. Cvetic, “A class of analytical functions to study lightning effects associated with the current front”, Eur. Trans. Electr. Power 12(2), 141‒150 (2002), doi: 10.1002/etep.4450120209.
  26.  S. Vujevic and D. Lovric, “Exponential approximation of the Heidler function for the reproduction of lightning current waveshapes”, Electr. Power Syst. Res. 80(10), 1293‒1298 (2010), doi: 10.1016/j.epsr.2010.04.012.
  27.  IEC, Protection against lightning – Part 1: General principles, IEC std. IEC 62305-1:2011. [Online]. Available: www.lsp-international. com/bs-en-62305-12011-protectionagainst-lightning-part-1-general-principles [Accessed: 13. Dec. 2020].
  28.  Cademce, “PSpice User’s Guide”, [Online]. Available: resources.pcb.candence.com/i/1180526-pspice-user-guide/20? [Accessed: 13. Dec. 2020].
Go to article

Authors and Affiliations

Artur Łukaszewski
1
ORCID: ORCID
Łukasz Nogal
1
ORCID: ORCID

  1. Electrical Power Engineering Institute, Faculty of Electrical Engineering, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this paper a concept of finite impulse response (FIR) narrow band-stop (notch) filter with non-zero initial conditions, based on infinite impulse response (IIR) prototype filter, is proposed. The filter described in this paper is used to suppress power line noise from ECG signals. In order to reduce the transient response of the proposed FIR notch filter, optimal initial conditions for the filter have been determined. The algorithm for finding the length of the initial conditions vector is presented. The proposed values of the length of initial conditions vector, for several ECG signals and interfering frequencies, are calculated. The proposed filters are tested using various ECG signals. Computer simulations demonstrate that the proposed FIR filters outperform traditional FIR filters with initial conditions set to zero.

Go to article

Authors and Affiliations

Sławomir Kocoń
Jacek Piskorowski
Download PDF Download RIS Download Bibtex

Abstract

In this work, transient and free vibration analyses are illustrated for a functionally graded Timoshenko beam (FGM) using finite element method. The governing equilibrium equations and boundary conditions (B-Cs) are derived according to the principle of Hamilton. The materials constituents of the FG beam that vary smoothly along the thickness of the beam (along beam thickness) are evaluated using the rule of mixture method. Power law index, slenderness ratio, modulus of elasticity ratio, and boundary conditions effect of the cantilever and simply supported beams on the dynamic response of the beam are studied. Moreover, the influence of mass distribution and continuous stiffness of the FGM beam are deeply investigated. Comparisons between the current free vibration results (fundamental frequency) and other available studies are performed to check the formulation of the current mathematical model. Good results have been obtained. A significant effect is noticed in the transient response of both simply supported and cantilever beams at the smaller values of the power index and the modulus elasticity ratio.

Go to article

Bibliography

[1] B.V. Sankar. An elasticity solution for functionally graded beams. Composites Science and Technology,61(5):689–96, 2001. doi: 10.1016/S0266-3538(01)00007-0.
[2] M. Şimşek. . Static analysis of a functionally graded beam under a uniformly distributed load by Ritz method. International Journal of Engineering and Applied Sciences, 1(3):1–11, 2009.
[3] S.A. Sina, H.M. Navazi, and H. Haddadpour. An analytical method for free vibration analysis of functionally graded beams. Materials & Design, 30(3):741–747, 2009. doi: 10.1016/j.matdes.2008.05.015.
[4] A. Chakrabarty, S. Gopalakrishnan, and J.N. Reddy. A new beam finite element for the analysis of functionally graded materials. International Journal of Mechanical Sciences, 45(3):519–539, 2003. doi: 10.1016/S0020-7403(03)00058-4.
[5] M. Al-Shujairi and Ç. Mollamahmutoğlu. Dynamic stability of sandwich functionally graded micro-beam based on the nonlocal strain gradient theory with thermal effect. Composite Structures, 201:1018–1030, 2018. doi: 10.1016/j.compstruct.2018.06.035.
[6] H.T. Thai and T.P. Vo. Bending and free vibration of functionally graded beams using various higher-order shear deformation beam theories. International Journal of Mechanical Sciences, 62(1):57–66, 2012. doi: 10.1016/j.ijmecsci.2012.05.014.
[7] M. Al-Shujairi and Ç. Mollamahmutoğlu. Buckling and free vibration analysis of functionally graded sandwich micro-beams resting on elastic foundation by using nonlocal strain gradient theory in conjunction with higher order shear theories under thermal effect. Composites Part B: Engineering, 154:292–312, 2018. doi: 10.1016/j.compositesb.2018.08.103.
[8] M. Şimşek and M. Al Shujairi. Static, free and forced vibration of functionally graded (FG) sandwich beams excited by two successive moving harmonic loads. Composites Part B: Engineering,108:18–34, 2017. doi: 10.1016/j.compositesb.2016.09.098.
[9] M. Aydogdu and V. Taskin. Free vibration analysis of functionally graded beams with simply supported edges. Materials & Design, 28(5):1651–1656, 2007. doi: 10.1016/j.matdes.2006.02.007.
[10] M. Şimşek and T. Kocatürk. Free and forced vibration of a functionally graded beam subjected to a concentrated moving harmonic load. Composite Structures, 90(4):465–473, 2009. doi: 10.1016/j.compstruct.2009.04.024.
[11] K.K. Pradhan and S. Chakrabaty. Free vibration of Euler and Timoshenko functionally graded beams by Rayleigh-Ritz method. Composites Part B: Engineering, 51:175–184, 2013. doi: 10.1016/j.compositesb.2013.02.027.
[12] Y. Yang, C.C. Lam, K.P. Kou, and V.P. Iu. Free vibration analysis of the functionally graded sandwich beams by a meshfree boundary-domain integral equation method. Composite Structures, 117:32–39, 2014. doi: 10.1016/j.compstruct.2014.06.016.
[13] L.L. Ke, J. Yang, S. Kitipornchai, and Y. Xiang. Flexural vibration and elastic buckling of a cracked Timoshenko beam made of functionally graded materials. Mechanics of Advanced Materials and Structures, 16(6):488–502, 2009. doi: 10.1080/15376490902781175.
[14] M. Şimşek. Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories. Nuclear Engineering and Design, 240(4):697–705, 2010. doi: 10.1016/j.nucengdes.2009.12.013.
[15] M. Şimşek. Bi-directional functionally graded materials (BDFGMs) for free and forced vibration of Timoshenko beams with various boundary conditions. Composite Structures, 133:968–78, 2015. doi: 10.1016/j.compstruct.2015.08.021.
[16] J. Yang, Y. Chen, Y. Xiang, and X.L. Jia. Free and forced vibration of cracked inhomogeneous beams under an axial force and a moving load. Journal of Sound and Vibration, 312(1–2):166–181, 2008. doi: 10.1016/j.jsv.2007.10.034.
[17] S. Kapuria, M. Bhattacharyya, and A.N. Kumar. Bending and free vibration response of layered functionally graded beams: a theoretical model and its experimental validation. Composite Structures, 82(3):390–402, 2008. doi: 10.1016/j.compstruct.2007.01.019.
[18] J. Yang and Y. Chen. Free vibration and buckling analyses of functionally graded beams with edge cracks. Composite Structures, 83(1):48–60, 2008. doi: 10.1016/j.compstruct.2007.03.006.
[19] A. Doroushi, M.R. Eslami, and A. Komeili. Vibration analysis and transient response of an FGPM beam under thermo-electro-mechanical loads using higher-order shear deformation theory. Journal of Intelligent Material Systems and Structures, 22(3):231–243, 2011. doi: 10.1177/1045389X11398162.
[20] M.J. Aubad, S.O.W. Khafaji, M.T. Hussein, and M.A. Al-Shujairi. Modal analysis and transient response of axially functionally graded (AFG) beam using finite element method. Materials Research Express, 6(10):1065g4, 2019. doi: 10.1088/2053-1591/ab4234.
[21] Z. Su, G. Jin, and T. Ye. Vibration analysis and transient response of a functionally graded piezoelectric curved beam with general boundary conditions. Smart Materials and Structures, 25(6):065003, 2016. doi: 10.1088/0964-1726/25/6/065003.
[22] A. Daga, N. Ganesan, and K. Shankar. Transient dynamic response of cantilever magneto-electro-elastic beam using finite elements. International Journal for Computational Methods in Engineering Science and Mechanics, 10(3):173–185, 2009. doi: 10.1080/15502280902797207.
[23] Z.N. Li, Y.X. Hao, W. Zhang, and J.H. Zhang. Nonlinear transient response of functionally graded material sandwich doubly curved shallow shell using new displacement field. Acta Mechanica Solida Sinica, 31(1):108–126, 2018. doi: 10.1007/s10338-018-0008-8.
[24] Y. Huang and Y. Huang. A real-time transient analysis of a functionally graded material plate using reduced-basis methods. Advances in Linear Algebra & Matrix Theory, 5(3):98–108, 2015. doi: 10.4236/alamt.2015.53010.
[25] T. Yokoyama. Vibrations and transient response of Timoshenko beams resting on elastic foundation. Ingenieur Archiv, 57:81–90, 1987. doi: 10.1007/BF00541382.
[26] A.E. Alshorbagy, M.A. Eltaher, and F.F. Mahmoud. Free vibration characteristics of a functionally graded beam by finite element method. Applied Mathematical Modelling, 35(1):412–425, 2011. doi: 10.1016/j.apm.2010.07.006.
[27] S. Taeprasartsit. Nonlinear free vibration of thin functionally graded beams using the finite element method. Journal of Vibration and Control, 21(1):29–46, 2015. doi: 10.1177/1077546313484506.
[28] N. Pradhan and S.K. Sarangi. Free vibration analysis of functionally graded beams by finite element method. IOP Conference Series: Materials Science and Engineering, 377:012211, 2018. doi: 10.1088/1757-899X/377/1/012211.
[29] N. Fouda, T. El-Midany, and A.M. Sadoun. Bending, buckling and vibration of a functionally graded porous beam using finite elements. Journal of Applied and Computational Mechanics, 3(4):274–282, 2017. doi: 10.22055/jacm.2017.21924.1121.
[30] L.L. Jing, P.J. Ming, W.P. Zhang, L.R. Fu, and Y.P. Cao. Static and free vibration analysis of functionally graded beams by combination Timoshenko theory and finite volume method. Composite Structures, 138:192–213, 2016. doi: 10.1016/j.compstruct.2015.11.027.
[31] V. Kahya and M. Turan. Finite element model for vibration and buckling of functionally graded beams based on the first-order shear deformation theory. Composites Part B: Engineering, 109:108–115, 2017. doi: 10.1016/j.compositesb.2016.10.039.
[32] H. Su, J.R. Banerjee, and C.W. Cheung. Dynamic stiffness formulation and free vibration analysis of functionally graded beams. Composite Structures, 106:854–862, 2013. doi: 10.1016/j.compstruct.2013.06.029.
[33] Z. Friedman and J.B. Kosmatka. An improved two-node Timoshenko beam finite element. Computers & Structures, 47(3):473–481, 1993. doi: 10.1016/0045-7949(93)90243-7.
[34] Y.H. Lin. Vibration analysis of Timoshenko beams traversed by moving loads. Journal of Marine Science and Technology. 2(1):25–35, 1994.
Go to article

Authors and Affiliations

Salwan Obaid Waheed Khafaji
1
Mohammed A. Al-Shujairi
1
Mohammed Jawad Aubad
1

  1. Department of Mechanical Engineering, Faculty of Engineering, University of Babylon, BabylonProvince, Iraq.

This page uses 'cookies'. Learn more