Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Pressure pulsations occurring in volumetric compressors manifold are still one of the most important problems in design and operation of compressor plants. The resulting vibrations may cause fatigue cracks and noise. Accuracy of the contemporary method is not sufficient in many cases. The methods for calculating pressure pulsation propagation in volumetric compressors manifolds are based on one-dimensional models. In one-dimensional models, the assumption is made that any installation element may be simplified and modeled as a straight pipe with given diameter and length or as a lumped volume. This simplification is usually sufficient in the case of small elements and long waves. In general, the geometry of the element shall be also considered. This may be done using two ways: experimental measurements of pressure pulsations, which lead to transmittance approximation for the investigated element, or CFD analysis and simulation for the acoustic manifold element. In this paper, a new method based on Computational Fluid Dynamics (CFD) simulation is presented. The main idea is to use CFD simulation instead of experimental measurements. The impulse flow excitation is introduced as a source. The results of simulation are averaged in the inlet and outlet cross sections, so time only dependent functions at the inlet and outlet of the simulated element are determined. The transmittances of special form are introduced. On the basis of introduced transmittances, the generalized four pole matrix elements and impedance matrix elements may be calculated. The method has been verified on the basis of experimental measurements.

Go to article

Authors and Affiliations

Piotr Cyklis
Download PDF Download RIS Download Bibtex

Abstract

We report on the absorption properties of polarization-insensitive transmissive and reflective metamaterial absorbers based on two planar aluminium periodic structures and SU-8 epoxy resist. These absorbers were investigated using numerical simulation and experimental methods in the terahertz range (below 2 THz). SU-8 is a very promising organic material for dielectric layers in planar metamaterials, because its application simplifies the process of fabricating these structures and significantly reduces the fabrication time. The experimental absorption of the metamaterial absorbers has narrowband characteristics that were consistent with the numerical simulations. Power flow analysis in the transmissive metamaterial unit cell shows that the absorption in the terahertz range occurs primarily in the SU-8 layer of the absorber.

Go to article

Authors and Affiliations

B. Grześkiewicz
A. Sierakowski
J. Marczewski
N. Pałka
E. Wolarz
Download PDF Download RIS Download Bibtex

Abstract

Solar photovoltaic power is widely utilized in the energy industry. The performance of solar panels is influenced by different variables, including solar radiation, temperature, wind speed, relative humidity and the presence of haze or dirt. Outdoor solar panels are particularly susceptible to a decrease in energy efficiency due to the accumulation of dust particles in the air, which occurs as a result of natural weather conditions. The extent of dust deposition is primarily determined by factors such as the tilt angle of the panel, wind direction, cleaning frequency as well as local meteorological and geographical conditions. The dust on the solar cell glazing reduces the optical transmittance of the light beam, causing shadowing and diminishing the energy conversion productivity of the panels. Sand storms, pollution levels and snow accumulations all significantly impact the photovoltaic panel performance. These circumstances reduce the efficiency of solar panels. The experiment was carried out on two identical dust-accumulated and dust-free panels. The evaluation was carried out in two different situations on the offgrid stand-alone system: in a simulated atmosphere and in an open space during the day. The current-voltage curves have been developed for both panels at various tilt degrees. The features provide sufficient information to analyse the performance of the panels under consideration. The measurements demonstrate that as dust collects on the panel’s surface, the average output power and short circuit current decrease dramatically. The installation tilt angle affected the ratio of efficiency and average power outputs of dusty and clean panels.
Go to article

Authors and Affiliations

Minakshi Katoch
1
Vineet Dahiya
1
Surendra Kumar Yadav
1

  1. K.R. Mangalam University, Gurugram – 122103, India
Download PDF Download RIS Download Bibtex

Abstract

In this study, agar-based nanocomposite films containing ultra-porous silica aerogel particles were fabricated by gel casting using an aqueous agar/silica aerogel slurry. The silica aerogel particles did not show significant agglomeration and were homogeneously distributed in the agar matrix. Transmission electron microscopy observations demonstrated that the silica aerogel particles had a mesoporous microstructure and their pores were not incorporated into the agar polymer molecules. The thermal conductivities of the agar and agar/5 wt.% silica aerogel nanocomposite films were 0.36 and 0.20 W·m–1·K–1, respectively. The transmittance of the agar films did not decrease upon the addition of silica aerogel particles into them. This can be attributed to the anti-reflection effect of silica aerogel particles.

Go to article

Authors and Affiliations

Min-Jin Lee
Hyun-Ah Jung
Kyong-Jin Lee
Haejin Hwang
Download PDF Download RIS Download Bibtex

Abstract

Ice formed on radome surfaces causes communication disruption due to radio-frequency interference (RFI), which reveals the importance of de-icing systems for radomes. As a radome de-icing application, in this work, carbon nanotube (CNT) thin films were fabricated using a spray-coating method, and influence of process parameters on RF transmittance and electrothermal properties was investigated. With the increase of spraying time, sheet resistance of the fabricated film decreases, which results in a decrease of the RF transmittance and improvement of the heating performance. Also, the de-icing capability of the fabricated CNT film was evaluated at –20oC, and efficient removal of ice under cold conditions was demonstrated.

Go to article

Authors and Affiliations

Jun Hyuk Jung
Jiwon Hong
Youngryeul Kim
Seok-Min Yong
Jinwoo Park
Seung Jun Lee
Download PDF Download RIS Download Bibtex

Abstract

Small-signal transmittances: input-to-output and control-to-output of BUCK converter power stage working in CCM or DCM mode are discussed. Ideal converter case and converter with parasitic resistances are considered separately. Derivations of small-signal transmittances, based on different approaches to finding the converter averaged models, are presented and the results are compared. Apart from theoretical considerations, some results of numerical calculations are presented.

Go to article

Authors and Affiliations

Włodzimierz Janke
Download PDF Download RIS Download Bibtex

Abstract

This paper addresses the influence of land topography and cover on 3D radiative effects under cloudless skies in the Hornsund area, Spitsbergen, Svalbard. The authors used Monte Carlo simulations of solar radiation transfer over a heterogeneous surface to study the impact of a non-uniform surface on: (1) the spatial distribution of irradiance transmittance at the fjord surface under cloudless skies; (2) the spectral shortwave aerosol radiative forcing at the fjord surface; (3) normalized nadir radiance at the Top Of the Atmosphere (TOA) over the fjord. The modelled transmittances and radiances over the fjord are compared to the transmittances and radiances over the open ocean under the same conditions. The dependence of the 3D radiative effects on aerosol optical thickness, aerosol type, surface albedo distribution, solar azimuth and zenith angle and spectral channel is discussed. The analysis was done for channels 3 (459-479 nm) and 2 (841-876 nm) of the MODIS radiometer. In the simulations a flat water surface was assumed. The study shows that snow-covered land surrounding the fjord strongly modifies the radiation environment over the fjord surface. The enhancement of the mean irradiance transmittance over the fjord with respect to the open ocean is up to 0.06 for channel 3. The enhancement exceeds 0.11 in the vicinity of sunlit cliffs. The influence of the snow-covered land on the TOA radiance over the fjord in channel 3 is comparable to the impact of an increase in aerosol optical thickness of over 100%, and in lateral fjords of up to several hundred percent. The increase in TOA radiance is wavelength dependent. These effects may affect retrievals of aerosol optical thickness.
Go to article

Authors and Affiliations

Anna Rozwadowska
Izabela Górecka

This page uses 'cookies'. Learn more