Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 11
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Synthetic aperture (SA) technique is a novel approach to present day commercial systems and has previously not been used in medical ultrasound imaging. The basic idea of SA is to combine information acquired simultaneously from all directions over a number of emissions and to reconstruct the full image from these data.

The paper presents the multi-element STA (MSTA) method for medical ultrasound imaging. The main difference with the STA approach is the use of a few elements in the transmit mode in contrast to a single element aperture. This allows increasing the system frame rate, decreasing the number of emissions, and provides the best compromise between the penetration depth and lateral resolution. Besides, a modified MSTA is proposed with a corresponding RF signal correction in the receive mode, which accounts for the element directivity property.

In the experiments a 32-element linear transducer array with 0.48 mm inter-element spacing and a burst pulse of 100 ns duration were used. Two elements wide transmission aperture was used to generate an ultrasound wave covering the full image region. The comparison of 2D ultrasound images of a tissue mimicking phantom obtained using the STA and MSTA methods is presented to demonstrate the benefits of the second one.

Go to article

Authors and Affiliations

Ihor Trots
Marcin Lewandowski
Yuriy Tasinkevych
Andrzej Nowicki
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the optimization problem for the multi-element synthetic transmit aperture method (MSTA) in ultrasound imaging applications. The optimal choice of the transmit aperture size is made as a trade-off between the lateral resolution, penetration depth and the frame rate. Results of the analysis obtained by a developed optimization algorithm are presented. The maximum penetration depth and lateral resolution at given depths are chosen as optimization criteria. The results of numerical experiments carried out in MATLAB® using synthetic aperture data of point reflectors obtained by the FIELD II simulation program are presented. The visualization of experimental synthetic aperture data of a tissue mimicking phantom and in vitro measurements of the beef liver performed using the SonixTOUCH Research system are also shown.

Go to article

Authors and Affiliations

Marcin Lewandowski
Yuriy Tasinkevych
Andrzej Nowicki
Ihor Trots
Download PDF Download RIS Download Bibtex

Abstract

Ultrasound is used for breast cancer detection as a technique complementary to mammography, the standard screening method. Current practice is based on reflectivity images obtained with conventional instruments by an operator who positions the ultrasonic transducer by hand over the patient’s body. It is a non-ionizing radiation, pain-free and not expensive technique that provides a higher contrast than mammography to discriminate among fluid-filled cysts and solid masses, especially for dense breast tissue. However, results are quite dependent on the operator’s skills, images are difficult to reproduce, and state-of-the-art instruments have a limited resolution and contrast to show micro-calcifications and to discriminate between lesions and the surrounding tissue. In spite of their advantages, these factors have precluded the use of ultrasound for screening.

This work approaches the ultrasound-based early detection of breast cancer with a different concept. A ring array with many elements to cover 360◦ around a hanging breast allows obtaining repeatable and operator-independent coronal slice images. Such an arrangement is well suited for multi-modal imaging that includes reflectivity, compounded, tomography, and phase coherence images for increased specificity in breast cancer detection. Preliminary work carried out with a mechanical emulation of the ring array and a standard breast phantom shows a high resolution and contrast, with an artifact-free capability provided by phase coherence processing.

Go to article

Authors and Affiliations

Jorge Camacho
Luis Medina
Jorge F. Cruza
José M. Moreno
Carlos Fritsch

Authors and Affiliations

Piotr Karwat
1

  1. Department of Ultrasound, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The main objective of this study is to improve the ultrasound image by employing a new algorithm based on transducer array element beam pattern correction implemented in the synthetic transmit aperture (STA) method combined with emission of mutually orthogonal complementary Golay sequences. Orthogonal Golay sequences can be transmitted and received by different transducer elements simultaneously, thereby decreasing the time of image reconstruction, which plays an important role in medical diagnostic imaging. The paper presents the preliminary results of computer simulation of the synthetic aperture method combined with the orthogonal Golay sequences in a linear transducer array. The transmission of long waveforms characterized by a particular autocorrelation function allows to increase the total energy of the transmitted signal without increasing the peak pressure. It can also improve the signal-to-noise ratio and increase the visualization depth maintaining the ultrasound image resolution. In the work, the 128-element linear transducer array with a 0.3 mm pitch excited by 8-bits Golay coded sequences as well as one cycle at nominal frequencies of 4 MHz were used. The comparison of 2D ultrasound images of the phantoms is presented to demonstrate the benefits of a coded transmission. The image reconstruction was performed using the synthetic STA algorithm with transmit and receive signals correction based on a single element directivity function.
Go to article

Authors and Affiliations

Ihor Trots
Download PDF Download RIS Download Bibtex

Abstract

Commercially available cardiac scanners use 64–128 elements phased-array (PA) probes and classical delay-and-sum beamforming to reconstruct a sector B-mode image. For portable and hand-held scanners, which are the fastest growing market, channel count reduction can greatly decrease the total power and cost of devices. The introduction of ultra-fast imaging methods based on plane waves and diverging waves provides new insight into heart’s moving structures and enables the implementation of new myocardial assessment and advanced flow estimation methods, thanks to much higher frame rates. The goal of this study was to show the feasibility of reducing the channel count in the diverging wave synthetic aperture image reconstruction method for phased-arrays. The application of ultra-fast 32-channel subaperture imaging combined with spatial compounding allowed the frame rate of approximately 400 fps for 120 mm visualization to be achieved with image quality obtained on par with the classical 64-channel beamformer. Specifically, it was shown that the proposed method resulted in image quality metrics (lateral resolution, contrast and contrast-to-noise ratio), for a visualization depth not exceeding 50 mm, that were comparable with the classical PA beamforming. For larger visualization depths (80–100 mm) a slight degradation of the above parameters was observed. In conclusion, diverging wave phased-array imaging with reduced number of channels is a promising technology for low-cost, energy efficient hand-held cardiac scanners.

Go to article

Authors and Affiliations

Yuriy Tasinkevych
Marcin Lewandowski
Ziemowit Klimonda
Mateusz Walczak
Download PDF Download RIS Download Bibtex

Abstract

The objective of this paper is an experimental study of the most crucial parameters of the received acoustic signals (e.g. signal-to-noise ratio (SNR), side-lobes level (SLL), axial resolution) obtained as a result of simultaneous emission of mutually orthogonal Golay complementary sequences (MOGCS) to demonstrate their feasibility of being used in ultrasound diagnostics. Application of the MOGCS in ultrasound measurements allows the image reconstruction time to be shortened without decreasing the resulting quality of reconstructed images in comparison with regular complementary Golay coded sequences (CGCS). In this paper two sets of 16-bits long MOGCS were implemented in the Verasonics Vantage TM (Verasonics Inc., Kirkland, WA, USA) scanner. Ultrasound data were generated using a perfect reflector, a custom-made nylon wire phantom and tissue mimicking phantom. Parameters of the detected MOGCS echoes like SNR, SLL and axial resolution were determined and compared to that of the standard CGCS and the short two-sine cycles pulse. It was evidenced that applying MOGCS did not compromise the parameters of the separated and compressed echoes in comparison to the other types of transmitted signal – the CGCS and the short pulse. Concretely, both the MOGCS and CGCS yield similar SNR increase in comparison to the short pulse. Almost similar values of the axial resolution estimated at the full width at the half maximum level for all types of the transmitted signals were also obtained. At the same time, using the MOGCS the data acquisition speed can be increased twice in comparison with the CGCS signal.
Go to article

Authors and Affiliations

Ihor Trots
1
Norbert Żołek
1
Yurij Tasinkevych
1
Janusz Wójcik
1

  1. Ultrasound Department, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the theoretical and experimental study of synthetic transmit aperture (STA) method combined with Golay coded transmission for medical ultrasound imaging applications. The transmission of long waveforms characterized by a particular autocorrelation function allows to increase the total energy of the transmitted signal without increasing the peak pressure. It can also improve signal-to-noise ratio and increase the visualization depth maintaining the ultrasound image resolution.

In the work the 128-element linear transducer array with 0.3 mm pitch excited by the 8 and 16-bits Golay coded sequences as well as a one cycle at nominal frequencies 4 MHz were used. The comparison of 2D ultrasound images of the tissue mimicking phantoms is presented to demonstrate the benefits of coded transmission. The image reconstruction was performed using synthetic STA algorithm with transmit and receive signals correction based on a single element directivity function.

Go to article

Authors and Affiliations

Ihor Trots
Andrzej Nowicki
Yuriy Tasinkevych
Marcin Lewandowski
Download PDF Download RIS Download Bibtex

Abstract

We have designed and built ultrasound imaging-guided HIFU ablative device for preclinical studies on small animals. Before this device is used to treat animals, ex vivo tissue studies were necessary to determine the location and extent of necrotic lesions created inside tissue samples by HIFU beams depending on their acoustic properties. This will allow to plan the beam movement trajectory and the distance and time intervals between exposures leading to necrosis covering the entire treated volume without damaging the surrounding tissues. This is crucial for therapy safety. The objective of this study was to assess the impact of sonication parameters on the size of necrotic lesions formed by HIFU beams generated by 64-mm bowl-shaped transducer used, operating at 1.08 MHz or 3.21 MHz. Multiple necrotic lesions were created in pork loin samples at 12.6-mm depth below tissue surface during 3-s exposure to HIFU beams with fixed duty-cycle and varied pulse-duration or fixed pulse-duration and varied duty-cycle, propagated in two-layer media: water-tissue. After exposures, the necrotic lesions were visualized using magnetic resonance imaging and optical imaging (photos) after sectioning the samples. Quantitative analysis of the obtained results allowed to select the optimal sonication and beam movement parameters to support planning of effective therapy.
Go to article

Bibliography

1. Chauhan S. (2008), FUSBOTs: image-guided robotic systems for Focused Ultrasound Surgery, Medical Robotics, Vanja Bozovic, I-Tech Education and Publishing, Vienna, Austria.
2. Choi J.W. et al. (2014), Portable high-intensity focused ultrasound system with 3D electronic steering, real-time cavitation monitoring, and 3D image reconstruction algorithms: a preclinical study in pigs, Ultrasonography, 33(3): 191–199, doi: 10.14366/usg.14008.
3. Duck F.A. (1990), Physical Properties of Tissue: A Comprehensive Reference Book, Academic Press, London.
4. Ebbini E.S., ter Haar G. (2015), Ultrasound-guided therapeutic focused ultrasound: current status and future directions, International Journal of Hyperthermia, 31(2): 77–89, doi: 10.3109/02656736.2014.995238.
5. Ellens N. et al. (2015), The targeting accuracy of a preclinical MRI-guided focused ultrasound system, Medical Physics, 42(1): 430–439, doi: 10.1118/1.4903950.
6. Fukuda H. et al. (2011), Hyper-echo in ultrasound images during high-intensity focused ultrasound ablation for hepatocellular carcinomas, European Journal of Radiology, 80(3): e571–e575, doi: 10.1016/ j.ejrad.2011.09.001.
7. Fura Ł., Kujawska T. (2019), Selection of exposure parameters for a HIFU ablation system using an array of thermocouples and numerical simulations, Archives of Acoustics, 44(2): 349–355, doi: 10.24425/ aoa.2019.128498.
8. Guillaumier S. et al. (2018), A multicentre study of 5- year outcomes following focal therapy in treating clinically significant nonmetastatic prostate cancer, European Urology, 74(4): 422–429, doi: 10.1016/j.eururo. 2018.06.006.
9. ter Haar G. (2007), Therapeutic applications of ultrasound, Progress in Biophysics & Molecular Biology, 93(1–3): 111–129, doi: 10.1016/j.pbiomolbio. 2006.07.005.
10. Hand J.W., Shaw A., Sadhoo N., Rajaqopal S., Dickinson R.J., Gavrilov L.R. (2009), A random phased array device for delivery of high intensity focused ultrasound, Physics in Medicine & Biology, 54(19): 5675–5693, doi: 10.1088/0031-9155/54/19/002.
11. Koch T., Lakshmanan S., Brand S., Wicke M., Raum K., Moerlein D. (2011), Ultrasound velocity and attenuation of porcine soft tissues with respect to structure and composition: I. Muscle, Meat Science, 88(1): 51–58, doi: 10.1016/j.meatsci.2010.12.002.
12. Kujawska T., Secomski W., Byra M., Postema M., Nowicki A. (2017), Annular phased array transducer for preclinical testing of anti-cancer drug efficacy on small animals, Ultrasonics, 76: 92–98, doi: 10.1016/j.ultras.2016.12.008.
13. Law W.K., Frizzell L.A., Dunn F. (1985), Determination of the nonlinearity parameter B/A of biological media, Ultrasound in Medicine & Biology, 11(2): 307–318, doi: 10.1016/0301-5629(85)90130-9.
14. Leslie T. et al. (2012), High-intensity focused ultrasound treatment of liver tumours: post-treatment MRI correlates well with intra-operative estimates of treatment volume, The British Journal of Radiology, 85(1018): 1363–1370, doi: 10.1259/bjr/56737365.
15. Li K., Bai J.F., Chen Y.Z., Ji X. (2018), Experimental evaluation of targeting accuracy of an ultrasound- guided phased-array high-intensity focused ultrasound system, Applied Acoustics, 141: 19–25, doi: 10.1016/j.apacoust.2018.06.011.
16. Li S., Wu P.H. (2013), Magnetic resonance imageguided versus ultrasound guided high-intensity focused ultrasound in the treatment of breast cancer, Chinese Journal of Cancer, 32(8): 441–452, doi: 10.5732/cjc.012.10104.
17. Masamune K., Kurima I., Kuwana K., Yamashita H., Chiba T., Dohi T. (2013), HIFU positioning robot for less-invasive fetal treatment, Procedia CIRP, 5: 286-289, doi: 10.1016/j.procir.2013.01.056.
18. Melodelima D., N’Djin W.A., Parmentier H., Chesnais S., Rivoire M., Chapelon J.Y. (2009), Thermal ablation by high-intensity-focused ultrasound using a toroid transducer increases the coagulated volume. Results of animal experiments, Ultrasound in Medicine & Biology, 35(3): 425–435, doi: 10.1016/j.ultrasmedbio.2008.09.020
19. Nassiri D.K., Nicholas D., Hill C.R. (1979), Attenuation of ultrasound in skeletal muscle, Ultrasonics, 17(5): 230–232, doi: 10.1016/0041-624x(79)90054-4.
20. Orsi F., Arnone P., Chen W., Zhang L. (2010), High intensity focused ultrasound ablation: a new therapeutic option for solid tumors, Journal of Cancer Research and Therapeutics, 6(4): 414–420, doi: 10.4103/0973-1482.77064.
21. Schneider C.A., Rasband W.S., Eliceiri K.W. (2012), NIH Image to ImageJ: 25 years of image analysis, Nature Methods, 9(7): 671–675, doi: 10.1038/ nmeth.2089.
22. Shui L. et al. (2015), High-intensity focused ultrasound (HIFU) for adenomyosis: two-year follow-up results, Ultrasonics Sonochemistry, 27: 677–681, doi: 10.1016/j.ultsonch.2015.05.024.
23. Treeby B.E., Jaros J., Rendell A.P., Cox B.T. (2012), Modeling nonlinear ultrasound propagation in heterogeneous media with power law absorption using a k-space pseudo-spectral method, The Journal of the Acoustical Society of America, 131(6): 4324–4336, doi: 10.1121/1.4712021.
24. Veereman G. et al. (2015), Systematic review of the efficacy and safety of high-intensity focused ultrasound for localized prostate cancer, European Urology Focus, 1(2): 158–170, doi: 10.1016/j.euf.2015.04.006.
25. Wang Y., Wang Z.B., Xu Y.H. (2018), Efficacy, efficiency, and safety of magnetic resonance-guided highintensity focused ultrasound for ablation of uterine fibroids: comparison with ultrasound-guided method, Korean Journal of Radiology, 19(4): 724–732, doi: 10.3348/kjr.2018.19.4.724.
26. Wójcik J., Nowicki A., Lewin P.A., Bloomfield P.E., Kujawska T., Filipczynski L. (2006), Wave envelopes method for description of nonlinear acoustic wave propagation, Ultrasonics, 44: 310–329, doi: 10.1016/j.ultras.2006.04.001.
27. Yu T., Xu C. (2008), Hyperecho as the indicator of tissue necrosis during microbubble-assisted high intensity focused ultrasound sensitivity, specificity and predictive value, Ultrasound in Medicine & Biology, 34(8): 1343–1347, doi: 10.1016/j.ultrasmedbio.2008.01.012.
28. Zavaglia C., Mancuso A., Foschi A., Rampoldi A. (2013), High-intensity focused ultrasound (HIFU) for the treatment of hepatocellular carcinoma: is it time to abandon standard ablative percutaneous treatments?, Hepatobiliary Surgery and Nutrition, 2(4): 184–187, doi: 10.3978/j.issn.2304-3881.2013.05.02.
29. Zhang L., Rao F., Setzen R. (2017), High intensity focused ultrasound for the treatment of adenomyosis: selection criteria, efficacy, safety and fertility, Acta Obstetricia et Gynecologica Scandinavica, 96(6): 707–714, doi: 10.1111/aogs.13159.
30. Zhang X., Li K., Xie B., He M., He J., Zhang L. (2014), Effective ablation therapy of adenomyosis with ultrasound-guided high-intensity focused ultrasound, International Journal of Gynecology & Obstetrics, 124(3): 207–211, doi: 10.1016/j.ijgo.2013.08.022.

Go to article

Authors and Affiliations

Łukasz Fura
1
Wojciech Dera
2
Cezary Dziekoński
2
Maciej Świątkiewicz
3
Tamara Kujawska
1

  1. Department of Ultrasound Institute of Fundamental Technological Research, Polish Academy of Sciences
  2. Department of Theory of Continuous Media and Nanostructures Institute of Fundamental Technological Research, Polish Academy of Sciences
  3. Department of Experimental Pharmacology Mossakowski Medical Research Centre, Polish Academy of Sciences

This page uses 'cookies'. Learn more