Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The goal of multi-criteria decision making (MCDM) is to select the most appropriate of the alternatives by evaluating many conflicting criteria together. MCDM methods are widely available in the literature and have been used in various energy problems. The key problems studied in electrical power systems in recent years have included voltage instability and voltage collapse. Different flexible alternating current transmission systems (FACTS) equipment has been used for this purpose for decades, increasing voltage stability while enhancing system efficiency, reliability and quality of supply, and offering environmental benefits. Finding the best locations for these devices in terms of voltage stability in actual electrical networks poses a serious problem. Many criteria should be considered when determining the most suitable location for the controller. The aim of this paper is to provide a comparative analysis of MCDM techniques to be used for optimal location of a static VAR compensator (SVC) device in terms of voltage stability. The ideal location can be determined by means of sorting according to priority criteria. The proposed approach was carried out using the Power System Analysis Toolbox (PSAT) in MATLAB in the IEEE 14-bus test system. Using ten different MCDM methods, the most appropriate locations were compared among themselves and a single ranking list was obtained, integrated with the Borda count method, which is a data fusion technique. The application results showed that the methods used are consistent among themselves. It was revealed that the integrated model was an appropriate method that could be used for optimal location selection, providing reliable and satisfactory results to power system planners.
Go to article

Authors and Affiliations

Faruk Aydin
1
ORCID: ORCID
Bilal Gümüş
2
ORCID: ORCID

  1. Department of Electrical and Electronics Engineering, Faculty of Technology, Marmara University, İstanbul 34722, Turkey
  2. Department of Electrical and Electronics Engineering, Faculty of Engineering, Dicle University, Diyarbakır 21680, Turkey
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a honey badger algorithm (HB) based on a modified backwardforward sweep power flow method to determine the optimal placement of droop-controlled dispatchable distributed generations (DDG) corresponding to their sizes in an autonomous microgrid (AMG). The objectives are to minimise active power loss while considering the reduction of reactive power loss and total bus voltage deviation, and the maximisation of the voltage stability index. The proposed HB algorithm has been tested on a modified IEEE 33-bus AMG under four scenarios of the load profile at 40%, 60%, 80%, and 100% of the rated load. The analysis of the results indicates that Scenario 4, where the HB algorithm is used to optimise droop gains, the positioning of DDGs, and their reference voltage magnitudes within a permissible range, is more effective in mitigating transmission line losses than the other scenarios. Specifically, the active and reactive power losses in Scenario 4 with the HB algorithm are only 0.184% and 0.271% of the total investigated load demands, respectively. Compared to the base scenario (rated load), Scenario 4 using the HB algorithm also reduces active and reactive power losses by 41.86% and 31.54%, respectively. Furthermore, the proposed HB algorithm outperforms the differential evolution algorithm when comparing power losses for scenarios at the total investigated load and the rated load. The results obtained demonstrate that the proposed algorithm is effective in reducing power losses for the problem of optimal placement and size of DDGs in the AMG.
Go to article

Authors and Affiliations

Tham X. Nguyen
1
ORCID: ORCID
Robert Lis
1
ORCID: ORCID

  1. Faculty of Electrical Engineering, Wrocław University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wrocław, Poland
Download PDF Download RIS Download Bibtex

Abstract

A principle diagram of a high-voltage low-power power supply for devices comprising a microchannel plate (MCP) has been developed. A mathematical model was built according to the developed scheme for a detailed study of the operation of the power supply and the selection of the optimal parameters of its components and obtaining the best output voltages. The power supply circuit comprises a control circuit, a pulse transformer, a voltage multiplier circuit, a feedback circuit, and an input stabilizer. The input stabilizer provides the maintenance of the voltage switched in the primary winding of the transformer at a given level regardless of the voltage drop of the power supply primary source. Moreover the stabilizer provides constant voltage maintenance when the load resistance changes. (with Rload changing from 100 to 200 MΩ, Uout did not exceed 3 V).
Go to article

Bibliography

[1]. Rosanna Rispoli, Elisabetta De Angelis, Luca Colasanti, Nello Vertolli, Stefano Orsini «ELENA microchannel plate detector: absolute detection efficiency for low energy neutral atoms», Optical Engineering, 2013.
[2]. O. Chassela A. Grigoreiv A. Fedorov N. André, «Resistance and gain of the microchannel plate (MCP) detector as a function of temperature», International Conference on Space Optics—ICSO, 2018.
[3]. J Upadhyay, H. R. Bundel, R. Chandra, J. A. Chakera, C.P. Navathe and P.D. Gupta, «A simple power supply and control unit for pulsed operation of a microchannel plate imaging detector», 1998.
[4]. Zhi Qiang, Yang Ye, Yan Bo, Li Jun-guo, Ni Xiao-bing, Wang Yu, Yao Ze, «The Cathode Control Circuit Design of Auto-Gating Power Supply for Low-Light-Level Image Intensifier», Science and Technology on Low-Light-Level Night Vision Laboratory, Xi’an, China, 2015.
[5]. Chengquan Peia, Jinshou Tianb, Zhen Liua, Hong Qinc, Shengli Wua, «A novel ZVS high voltage power supply for micro-channel plate photomultiplier tubes», 2017.
[6]. Cristian H. Belussi, Mariano Gómez Berisso, Yanina Fasano, «Low-noise High-voltage DC Power Supply for Nanopositioning Applications», 2014.
Go to article

Authors and Affiliations

Boris Martemianov
1
Alexander Ryzhkov
1
Grigoriy Vdovin
1

  1. Limited Liability Company Vladikavkaz Technological Center "BASPIK", North Osetia

This page uses 'cookies'. Learn more