Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper is devoted to the problem of the appearance of a stagnation region during Karman vortex shedding. This particular phenomenon has been addressed by G. Birkhoff in his model of vortices generation. Experimental results obtained by various research methods confirm the existence of a stagnation region. The properties of this stagnation region have been described based on experimental findings involving flow visualisation and hot-wire anemometry. Special attention has been paid to the relationship between the existence of a slit in the bluff body and the size of the stagnation region. The slit takes over the role of the stagnation region as an information channel for generating vortices.

Go to article

Authors and Affiliations

Grzegorz Pankanin
Download PDF Download RIS Download Bibtex

Abstract

The laminar flow around two side-by-side circular cylinders was numerically investigated using a vortex-in-cell method combined with a continuous-forcing immersed boundary method. The Reynolds number (Re) of the flow was examined in the range from 40 to 200, and the distance between the cylinders varies from 1.2 D to 6 D, where D is the cylinder diameter. Simulation results show that the vortex wake is classified into eight patterns, such as single-bluff-body, meandering-motion, steady, deflected-in-one-direction, flip-flopping, anti-phase-synchronization, in-phase-synchronization, and phase-difference-synchronization, significantly depending on the Re, the cylinder distance, and the initial external disturbance effects. The anti-phase-synchronization, in-phase-synchronization, and phase-difference-synchronization vortex patterns can be switched at a low Re after a long time evolution of the flow. In particular, the single-bluff-body and flip-flopping vortex patterns excite the oscillation amplitude of the drag and lift coefficients exerted on the cylinders.
Go to article

Bibliography

[1] S. Ishigai, E. Nishikawa, K. Nishimura, and K. Cho. Experimental study on structure of gas flow in tube banks with tube axes normal to flow: Part 1, Karman vortex flow from two tubes at various spacings. Bulletin of JSME, 15(86):949–956, 1972. doi: 10.1299/jsme1958.15.949.
[2] P.W. Bearman and A.J.Wadcock. The interaction between a pair of circular cylinders normal to a stream. Journal of Fluid Mechanics, 61(3):499–511, 1973. doi: 10.1017/S0022112073000832.
[3] M.M. Zdravkovich. The effects of interference between circular cylinders in cross flow. Journal of Fluids and Structures, 1(2):239–261, 1987. doi: 10.1016/S0889-9746(87)90355-0.
[4] C.H.K. Williamson. Evolution of a single wake behind a pair of bluff bodies. Journal of Fluid Mechanics, 159:1–18, 1985. doi: 10.1017/S002211208500307X.
[5] H.J. Kim and P.A. Durbin. Investigation of the flow between a pair of circular cylinders in the flopping regime. Journal of Fluid Mechanics, 196:431–448, 1988. doi: 10.1017/S0022112088002769.
[6] K.-S. Chang and C.-J.. Song. Interactive vortex shedding from a pair of circular cylinders in a transverse arrangement. International Journal for Numerical Methods in Fluids, 11(3):317–329, 1990. doi: 10.1002/fld.1650110305.
[7] S. Kang. Characteristics of flow over two circular cylinders in a side-by-side arrangement at low Reynolds numbers. Physics of Fluids, 15(9):2486, 2003. doi: 10.1063/1.1596412.
[8] A. Slaouti and P.K. Stansby. Flow around two circular cylinders by the random-vortex method. Journal of Fluids and Structures, 6(6):641–670, 1992. doi: 10.1016/0889-9746(92)90001-J.
[9] J.R. Meneghini, F. Saltara, C.L.R. Siqueira, and J.A. Ferrari Jr. Numerical simulation of flow interference between two circular cylinders in tandem and side-by-side arrangements. Journal of Fluids and Structures, 15(2):327–350, 2001. doi: 10.1006/jfls.2000.0343.
[10] W. Jester and Y. Kallinderis. Numerical study of incompressible flow about fixed cylinder pairs. Journal of Fluids and Structures, 17(4):561–577, 2003. doi: 10.1016/S0889-9746(02)00149-4.
[11] C.K. Birdsall and D. Fuss. Clouds-in-clouds, clouds-in-cells physics for many-body plasma simulation. Journal of Computational Physics, 3(4):494–511, 1969. doi: 10.1016/0021-9991(69)90058-8.
[12] I.P. Christiansen. Numerical simulation of hydrodynamics by the method of point vortices. Journal of Computational Physics,13(3):363–379,1973. doi: 10.1016/0021-9991(73)90042-9.
[13] G.-H. Cottet and P.D. Koumoutsakos. Vortex Methods: Theory and Practice. Cambridge University Press, 2000.
[14] V.L. Nguyen, R.Z. Lavi, and T. Uchiyama. Numerical simulation of flow around two tandem cylinders by vortex in cell method combined with immersed boundary method. Advances and Applications in Fluid Mechanics, 19(4):781–804, 2016. doi: 10.17654/FM019040787.
[15] V.L. Nguyen, T. Takamure, and T. Uchiyama. Deformation of a vortex ring caused by its impingement on a sphere. Physics of Fluids, 31(10):107108, 2019. doi: 10.1063/1.5122260.
[16] V. L. Nguyen, T. Nguyen-Thoi, and V. D. Duong. Characteristics of the flow around four cylinders of various shapes. Ocean Engineering, 238:109690, 2021.
[17] J.J. Monaghan. Extrapolating B splines for interpolation. Journal of Computational Physics, 60(2):253–262, 1985. doi: 10.1016/0021-9991(85)90006-3.
[18] J.H. Walther and P. Koumoutsakos. Three-dimensional vortex methods for particle-laden flows with two-way coupling. Journal of Computational Physics, 167(1):39–71, 2001. doi: 10.1006/jcph.2000.6656.
[19] C.S. Peskin. Flow patterns around heart valves: a numerical method. Journal of Computational Physics, 10(2):252–271, 1972. doi: 10.1016/0021-9991(72)90065-4.
[20] P. Angot, C.-H. Bruneau, and P. Fabrie. A penalization method to take into account obstacles in incompressible viscous flows. Numerische Mathematik, 81:497–520, 1999. doi: 10.1007/s002110050401.
[21] E.A. Fadlun, R. Verzicco, P. Orlandi, and J. Mohd-Yusof. Combined immersed-boundary finitedifference methods for three-dimensional complex flow simulations. Journal of Computational Physics, 191(1):35–60, 2000. doi: 10.1006/jcph.2000.6484.
[22] N.K.-R. Kevlahan and J.-M. Ghidaglia. Computation of turbulent flow past an array of cylinders using a spectral method with Brinkman penalization. European Journal of Mechanics - B/Fluids, 20(3):333–350, 2001. doi: 10.1016/S0997-7546(00)01121-3.
[23] M. Coquerelle and G.-H.Cottet. Avortex level set method for the two-way coupling of an incompressible fluid with colliding rigid bodies. Journal of Computational Physics, 227(21):9121– 9137, 2008. doi: 10.1016/j.jcp.2008.03.041.
[24] F. Noca, D. Shiels, and D. Jeon. A comparison of methods for evaluating time-dependent fluid dynamic forces on bodies, using only velocity fields and their derivatives. Journal of Fluids and Structures, 13(5):551–578, 1999. doi: 10.1006/jfls.1999.0219.
[25] C. Mimeau, F. Gallizio, G.-H. Cottet, and I. Mortazavi. Vortex penalization method for bluff body flows. International Journal for Numerical Methods in Fluids, 79(2):55–83, 2015. doi: 10.1002/fld.4038.
[26] J.-I. Choi, R.C. Oberoi, J.R. Edwards, and J.A. Rosati. An immersed boundary method for complex incompressible flows. Journal of Computational Physics, 224(2):757–784, 2007. doi: 10.1016/j.jcp.2006.10.032.
[27] AB. Harichandan and A. Roy. Numerical investigation of low Reynolds number flow past two and three circular cylinders using unstructured grid CFR scheme. International Journal of Heat and Fluid Flow, 31(2):154–171, 2010. doi: 10.1016/j.ijheatfluidflow.2010.01.007.
[28] M. Braza, P. Chassaing, and H. Ha Minh. Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder. Journal of Fluid Mechanics, 165:79– 130, 1986. doi: 10.1017/S0022112086003014.
[29] K. Supradeepan and A. Roy. Characterisation and analysis of flow over two side by side cylinders for different gaps at low Reynolds number: A numerical approach. Physics of Fluids, 26(6):063602, 2014. doi: 10.1063/1.4883484.
[30] V.L. Nguyen, T. Degawa, and T. Uchiyama. Numerical simulation of annular bubble plume by vortex in cell method. International Journal of Numerical Methods for Heat and Fluid Flow, 29(3):1103–1131, 2019. doi: 10.1108/HFF-03-2018-0094.
Go to article

Authors and Affiliations

Van Luc Nguyen
1
ORCID: ORCID
Duy Knanh Ho
1

  1. Institute of Engineering and Technology, Thu Dau Mot University, Binh Duong Province, Vietnam

This page uses 'cookies'. Learn more