Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Gas bubbles in the ocean are produced by breaking waves, rainfall, methane seeps, exsolution, and a range of biological processes including decomposition, photosynthesis, respiration and digestion. However one biological process that produces particularly dense clouds of large bubbles, is bubble netting. This is practiced by several species of cetacean. Given their propensity to use acoustics, and the powerful acoustical attenuation and scattering that bubbles can cause, the relationship between sound and bub-ble nets is intriguing. It has been postulated that humpback whales produce ‘walls of sound’ at audio frequencies in their bubble nets, trapping prey. Dolphins, on the other hand, use high frequency acous-tics for echolocation. This begs the question of whether, in producing bubble nets, they are generating echolocation clutter that potentially helps prey avoid detection (as their bubble nets would do with man-made sonar), or whether they have developed sonar techniques to detect prey within such bubble nets and distinguish it from clutter. Possible sonar schemes that could detect targets in bubble clouds are proposed, and shown to work both in the laboratory and at sea. Following this, similar radar schemes are proposed for the detection of buried explosives and catastrophe victims, and successful laboratory tests are undertaken.

Go to article

Authors and Affiliations

Timothy Leighton
Paul White
Download PDF Download RIS Download Bibtex

Abstract

Physical mechanisms of gas recirculation and wake closure were investigated by modeling the gas field generated by High Pressure Gas Atomizer using computational fluid dynamics. A recirculation mechanism based on axial and radial gas pressure gradient was proposed to explain the gas recirculation. The occurrence of wake closure is regarded as a natural result when elongated wake is gradually squeezed by expansion waves of increasing intensity. An abrupt drop could be observed in the numerical aspiration pressure curve, which corresponds well with the experimental results. The axial gradient of gas density is considered as the reason that results in the sudden decrease in aspiration pressure when wake closure occurs. Lastly, it is found that a shorter protrusion length and a smaller melt tip diameter would lead to a smaller wake closure pressure, which could benefit the atomizer design to produce fine metal powder with less gas consumption.
Go to article

Authors and Affiliations

Mingxiang Liu
1
ORCID: ORCID
Shan Zhou
2

  1. Shanghai University, School of Materials Science and Engineering, Center for Advanced Solidification Technology, Shanghai 200444, China
  2. Shanghai Jiao Tong University, Institute of Forming Technology and Equipment, 1954 Huashan Road, Shanghai 200030, China
Download PDF Download RIS Download Bibtex

Abstract

The flow structure around rising single air bubbles in water and their characteristics, such as equivalent diameter, rising velocity and shape, was investigated using Particle Image Velocimetry (PIV) and Shadowgraphy in a transparent apparatus with a volume of 120 mL. The effect of different volumetric gas flow rates, ranging from 4 μL/min to 2 mL/min on the liquid velocity was studied. Ellipsoidal bubbleswere observedwith a rising velocity of 0.25–0.29m/s. It was found that a Kármán vortex street existed behind the rising bubbles. Furthermore, the wake region expanded with increasing volumetric gas flow rate as well as the number and size of the vortices.

Go to article

Authors and Affiliations

Björn Lewandowski
Michał Fertig
Georg Krekel
Mathias Ulbricht
Download PDF Download RIS Download Bibtex

Abstract

The laminar flow around two side-by-side circular cylinders was numerically investigated using a vortex-in-cell method combined with a continuous-forcing immersed boundary method. The Reynolds number (Re) of the flow was examined in the range from 40 to 200, and the distance between the cylinders varies from 1.2 D to 6 D, where D is the cylinder diameter. Simulation results show that the vortex wake is classified into eight patterns, such as single-bluff-body, meandering-motion, steady, deflected-in-one-direction, flip-flopping, anti-phase-synchronization, in-phase-synchronization, and phase-difference-synchronization, significantly depending on the Re, the cylinder distance, and the initial external disturbance effects. The anti-phase-synchronization, in-phase-synchronization, and phase-difference-synchronization vortex patterns can be switched at a low Re after a long time evolution of the flow. In particular, the single-bluff-body and flip-flopping vortex patterns excite the oscillation amplitude of the drag and lift coefficients exerted on the cylinders.
Go to article

Bibliography

[1] S. Ishigai, E. Nishikawa, K. Nishimura, and K. Cho. Experimental study on structure of gas flow in tube banks with tube axes normal to flow: Part 1, Karman vortex flow from two tubes at various spacings. Bulletin of JSME, 15(86):949–956, 1972. doi: 10.1299/jsme1958.15.949.
[2] P.W. Bearman and A.J.Wadcock. The interaction between a pair of circular cylinders normal to a stream. Journal of Fluid Mechanics, 61(3):499–511, 1973. doi: 10.1017/S0022112073000832.
[3] M.M. Zdravkovich. The effects of interference between circular cylinders in cross flow. Journal of Fluids and Structures, 1(2):239–261, 1987. doi: 10.1016/S0889-9746(87)90355-0.
[4] C.H.K. Williamson. Evolution of a single wake behind a pair of bluff bodies. Journal of Fluid Mechanics, 159:1–18, 1985. doi: 10.1017/S002211208500307X.
[5] H.J. Kim and P.A. Durbin. Investigation of the flow between a pair of circular cylinders in the flopping regime. Journal of Fluid Mechanics, 196:431–448, 1988. doi: 10.1017/S0022112088002769.
[6] K.-S. Chang and C.-J.. Song. Interactive vortex shedding from a pair of circular cylinders in a transverse arrangement. International Journal for Numerical Methods in Fluids, 11(3):317–329, 1990. doi: 10.1002/fld.1650110305.
[7] S. Kang. Characteristics of flow over two circular cylinders in a side-by-side arrangement at low Reynolds numbers. Physics of Fluids, 15(9):2486, 2003. doi: 10.1063/1.1596412.
[8] A. Slaouti and P.K. Stansby. Flow around two circular cylinders by the random-vortex method. Journal of Fluids and Structures, 6(6):641–670, 1992. doi: 10.1016/0889-9746(92)90001-J.
[9] J.R. Meneghini, F. Saltara, C.L.R. Siqueira, and J.A. Ferrari Jr. Numerical simulation of flow interference between two circular cylinders in tandem and side-by-side arrangements. Journal of Fluids and Structures, 15(2):327–350, 2001. doi: 10.1006/jfls.2000.0343.
[10] W. Jester and Y. Kallinderis. Numerical study of incompressible flow about fixed cylinder pairs. Journal of Fluids and Structures, 17(4):561–577, 2003. doi: 10.1016/S0889-9746(02)00149-4.
[11] C.K. Birdsall and D. Fuss. Clouds-in-clouds, clouds-in-cells physics for many-body plasma simulation. Journal of Computational Physics, 3(4):494–511, 1969. doi: 10.1016/0021-9991(69)90058-8.
[12] I.P. Christiansen. Numerical simulation of hydrodynamics by the method of point vortices. Journal of Computational Physics,13(3):363–379,1973. doi: 10.1016/0021-9991(73)90042-9.
[13] G.-H. Cottet and P.D. Koumoutsakos. Vortex Methods: Theory and Practice. Cambridge University Press, 2000.
[14] V.L. Nguyen, R.Z. Lavi, and T. Uchiyama. Numerical simulation of flow around two tandem cylinders by vortex in cell method combined with immersed boundary method. Advances and Applications in Fluid Mechanics, 19(4):781–804, 2016. doi: 10.17654/FM019040787.
[15] V.L. Nguyen, T. Takamure, and T. Uchiyama. Deformation of a vortex ring caused by its impingement on a sphere. Physics of Fluids, 31(10):107108, 2019. doi: 10.1063/1.5122260.
[16] V. L. Nguyen, T. Nguyen-Thoi, and V. D. Duong. Characteristics of the flow around four cylinders of various shapes. Ocean Engineering, 238:109690, 2021.
[17] J.J. Monaghan. Extrapolating B splines for interpolation. Journal of Computational Physics, 60(2):253–262, 1985. doi: 10.1016/0021-9991(85)90006-3.
[18] J.H. Walther and P. Koumoutsakos. Three-dimensional vortex methods for particle-laden flows with two-way coupling. Journal of Computational Physics, 167(1):39–71, 2001. doi: 10.1006/jcph.2000.6656.
[19] C.S. Peskin. Flow patterns around heart valves: a numerical method. Journal of Computational Physics, 10(2):252–271, 1972. doi: 10.1016/0021-9991(72)90065-4.
[20] P. Angot, C.-H. Bruneau, and P. Fabrie. A penalization method to take into account obstacles in incompressible viscous flows. Numerische Mathematik, 81:497–520, 1999. doi: 10.1007/s002110050401.
[21] E.A. Fadlun, R. Verzicco, P. Orlandi, and J. Mohd-Yusof. Combined immersed-boundary finitedifference methods for three-dimensional complex flow simulations. Journal of Computational Physics, 191(1):35–60, 2000. doi: 10.1006/jcph.2000.6484.
[22] N.K.-R. Kevlahan and J.-M. Ghidaglia. Computation of turbulent flow past an array of cylinders using a spectral method with Brinkman penalization. European Journal of Mechanics - B/Fluids, 20(3):333–350, 2001. doi: 10.1016/S0997-7546(00)01121-3.
[23] M. Coquerelle and G.-H.Cottet. Avortex level set method for the two-way coupling of an incompressible fluid with colliding rigid bodies. Journal of Computational Physics, 227(21):9121– 9137, 2008. doi: 10.1016/j.jcp.2008.03.041.
[24] F. Noca, D. Shiels, and D. Jeon. A comparison of methods for evaluating time-dependent fluid dynamic forces on bodies, using only velocity fields and their derivatives. Journal of Fluids and Structures, 13(5):551–578, 1999. doi: 10.1006/jfls.1999.0219.
[25] C. Mimeau, F. Gallizio, G.-H. Cottet, and I. Mortazavi. Vortex penalization method for bluff body flows. International Journal for Numerical Methods in Fluids, 79(2):55–83, 2015. doi: 10.1002/fld.4038.
[26] J.-I. Choi, R.C. Oberoi, J.R. Edwards, and J.A. Rosati. An immersed boundary method for complex incompressible flows. Journal of Computational Physics, 224(2):757–784, 2007. doi: 10.1016/j.jcp.2006.10.032.
[27] AB. Harichandan and A. Roy. Numerical investigation of low Reynolds number flow past two and three circular cylinders using unstructured grid CFR scheme. International Journal of Heat and Fluid Flow, 31(2):154–171, 2010. doi: 10.1016/j.ijheatfluidflow.2010.01.007.
[28] M. Braza, P. Chassaing, and H. Ha Minh. Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder. Journal of Fluid Mechanics, 165:79– 130, 1986. doi: 10.1017/S0022112086003014.
[29] K. Supradeepan and A. Roy. Characterisation and analysis of flow over two side by side cylinders for different gaps at low Reynolds number: A numerical approach. Physics of Fluids, 26(6):063602, 2014. doi: 10.1063/1.4883484.
[30] V.L. Nguyen, T. Degawa, and T. Uchiyama. Numerical simulation of annular bubble plume by vortex in cell method. International Journal of Numerical Methods for Heat and Fluid Flow, 29(3):1103–1131, 2019. doi: 10.1108/HFF-03-2018-0094.
Go to article

Authors and Affiliations

Van Luc Nguyen
1
ORCID: ORCID
Duy Knanh Ho
1

  1. Institute of Engineering and Technology, Thu Dau Mot University, Binh Duong Province, Vietnam
Download PDF Download RIS Download Bibtex

Abstract

The article aims to increase knowledge on methods for assessing Greenhouse Gases (GHG) emissions throughout the life cycle of marine alternative fuels. The life cycle of new marine alternative fuels and the assessment of GHG emissions resulting not only from their combustion is one of the new topics that are currently being discussed by the IMO, under the ‘Initial IMO GHG Reduction Strategy’ announced by the Organization in 2018. The IMO Marine Environment Protection Committee (IMO MEPC) is currently working on the development of Guidelines for Life-Cycle Assessment of GHG emissions for marine fuels from their extraction, through transport, processing, bunkering on board and end use in vessels propulsion systems, what is often called ‘from Cradle-to-Grave’. The use of fossil hydrocarbon fuels is common throughout the shipping industry, but in recent years ships with alternative energy sources have begun to be successfully introduced. Alternative fuels, although they may have low, zero or zero net GHG emissions in use (Tank to Wake or TtW), GHG emissions during their production, processing and distribution (Well-to-Tank or WtT) can vary widely. While a range of low-carbon and zero-carbon energy sources are potentially available for shipping, currently there is no clear decarbonization path or paths, and is likely that in the future a range of solutions will be adopted according to different vessel and operational requirements.
Go to article

Authors and Affiliations

Krzysztof Kołwzan
1

  1. Centre for IMO Affairs, Polish Register of Shipping
Download PDF Download RIS Download Bibtex

Abstract

Wireless sensor network is a dynamic field of networking and communication because of its increasing demand in critical Industrial and Robotics applications. Clustering is the technique mainly used in the WSN to deal with large load density for efficient energy conservation. Formation of number of duplicate clusters in the clustering algorithm decreases the throughput and network lifetime of WSN. To deal with this problem, advance distributive energy-efficient adaptive clustering protocol with sleep/wake scheduling algorithm (DEACP-S/W) for the selection of optimal cluster head is presented in this paper. The presented sleep/wake cluster head scheduling along with distributive adaptive clustering protocol helps in reducing the transmission delay by properly balancing of load among nodes. The performance of algorithm is evaluated on the basis of network lifetime, throughput, average residual energy, packet delivered to the base station (BS) and CH of nodes. The results are compared with standard LEACH and DEACP protocols and it is observed that the proposed protocol performs better than existing algorithms. Throughput is improved by 8.1% over LEACH and by 2.7% over DEACP. Average residual energy is increased by 6.4% over LEACH and by 4% over DEACP. Also, the network is operable for nearly 33% more rounds compared to these reference algorithms which ultimately results in increasing lifetime of the Wireless Sensor Network.
Go to article

Bibliography

[1] K. Sohraby, D. Minoli, T. Znati, “Wireless sensor networks: technology, protocols, and applications,” John Wiley & Sons, 2007.
[2] K. Pavai, A. Sivagami and D. Sridharan, "Study of Routing Protocols in Wireless Sensor Networks,” 2009 International Conference on Advances in Computing, Control and Telecommunication Technologies, Trivandrum, Kerala, 2009, pp. 522-525.
[3] D. Goyal and M. R. Tripathy, "Routing Protocols in Wireless Sensor Networks: A Survey,"2012 Second International Conference on Advanced Computing & Communication Technologies, Rohtak, Haryana, 2012, pp. 474-480.
[4] NasirSaeed, Ahmed Bader, T.Y. Al-Naffouri, Mohamed-slim Alouini, “When Wireless Communication Faces COVID-19: Combating the Pandemic and Saving the Economy,” Research Gate Journal, May 2020.
[5] Jitendra Singh, Rakesh Kumar, “Clustering algorithms for wireless sensor networks: A review,” 2nd International Conference on Computing for Sustainable Global Development, May 2015.
[6] S. Misra and R. Kumar, "A literature survey on various clustering approaches in wireless sensor network," IEEE 2nd International Conference on Communication Control and Intelligent Systems (CCIS), Mathura, 2016, pp. 18-22.
[7] S. Mishra, R. Bano, S. Kumar and V. Dixit, "A literature survey on routing protocol in wireless sensor network," IEEE International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS), Coimbatore, 2017, pp. 1-4.
[8] Kalyani Wankhede, Sumedha Sirsikar, “Review of Clustering Algorithms in Wireless Sensor Networks,” International Journal of Advance Foundation and Research in Computer (IJAFRC), Volume 1, Issue 11, November 2014, pp.126-133.
[9] Sangho Yi, Junyoung Heo, Yookun Cho and Jiman Hong b, “PEACH: Power-efficient and adaptive clustering hierarch protocol for wireless sensor networks,” Computer Communications, ELSEVIER, 23 June 2007, pp. 2842–2852.
[10] K. T. Kim and H. Y. Youn, “Energy-Driven Adaptive Clustering Hierarchy (EDACH) for Wireless Sensor Networks,” International Federation of Info. Processing, vol. 3823, Dec. 2005, pp. 1098–1107.
[11] V. Loscri, G. Morabito and S. Marano, “A Two-Level Hierarchy for Low-Energy Adaptive Clustering Hierarchy(TL-LEACH),” IEEE Proceedings of Vehicular Technology Conference, vol. 3, 2005, pp. 1809-1813.
[12] S. Nasr, M. Quwaider, “LEACH Protocol Enhancement for Increasing WSN Lifetime,” 2020 11th International Conference on Information and Communication Systems (ICICS), April 2020, pp. 102-107.
[13] M. Kaddi, Z. Khalili, M. Bruchra, “A Differential Evolution Based Clustering and Routing Protocol for WSN,” 2020 International Conference on Mathematics and Information Technology, March 2020, pp. 190-195.
[14] G. Malshetty, B. Mathapati, “Efficient Clustering in WSN-Cloud using LBSO (Load Based Self Organised) technique,” Third International Conference on Trends in Electronics and Informatics(ICOEI), October 2019, pp. 1243-1247.
[15] K. Dubey, A. Yadav, P. Kumar, P. Shekar, P. Rajput, S. Kumar, “Power Optimization Algorithm for Heterogeneous WSN using Multiple Attributes,” Proceedings of Third International Conference on Computing Methodologies and Communication (ICCMC), August 2019, pp. 294-299.
[16] O. Younis, S. Fahmy, “HEED: A Hybrid Energy-Efficient Distributed Clustering Approach for Ad Hoc Sensor Networks,” IEEE Transactions on mobile computing, vol. 3(4) , 2004, pp. 1-36
[17] A. Manjeshwar, D. P. Agrawal, “TEEN: A Routing Protocol for Enhanced Efficiency in Wireless Sensor Networks,” 15th International Workshop on Parallel and Distributed Processing Symposium (IPDPS), 23–27 April 2001, pp. 2009–2015.
[18] A. Manjeshwar, D. P. Agrawal, “APTEEN: A Hybrid Protocol for Efficient Routing and Comprehensive Information Retrieval in Wireless Sensor Networks,” 2nd International Workshop on Parallel and Distributed Computing Issues in Wireless Networks and Mobile Computing,” April 2002, pp. 195–202.
[19] Chirihane Gherbi, Zibouda Aliouat, Mohamed Benmohammed, “A Novel Load Balancing Scheduling Algorithm For Wireless Sensor Networks,” Journal of Network And Systems Management (2019) 27, pp. 430–462.
[20] Heinzelman W,Chandrakasan A and Balakrishnan H, "Energy-Efficient Communication Protocols for Wireless Microsensor Networks," Proceedings of the 33rd Hawaaian International Conference on Systems Science (HICSS), January 2000.
[21] JiuqiangXu, Wei Liu, Fenggao Lang, Yuanyuan Zhang, Chenglong Wang, “Distance Measurement Model Based on RSSI in WSN,” Scientific Research Journal on Wireless Sensor Network, August 2010, pp. 606-611
[22] Nazir Babar, Hasbullah Halabi & Madani Sajjad, “Sleep/wake scheduling scheme for minimizing end-to-end delay in multi-hop wireless sensor networks,” EURASIP Journal on Wireless Communications and Networking, 2011, art. no 92. doi: 10.1186/1687-1499-2011-92.

Go to article

Authors and Affiliations

Shankar D. Chavan
1
Shahaji R. Jagdale
1
Dhanashree A. Kulkarni
1
Sneha R. Jadhav
1

  1. Dr. D. Y. Patil Institute of Technology, Pimpri, Pune

This page uses 'cookies'. Learn more