Applied sciences

Archives of Thermodynamics

Content

Archives of Thermodynamics | 2018 | vol. 39 | No 4

Download PDF Download RIS Download Bibtex

Abstract

Proposed is the analysis of steam condensation in the presence of inert gases in a power plant condenser. The presence of inert, noncondensable gases in a condenser is highly undesirable due to its negative effect on the efficiency of the entire cycle. In general, thermodynamics has not provided an explicit criterion for assessing the irreversible heat transfer process. The method presented here enables to evaluate precisely processes occurring in power plant condensers. This real process is of particular interest as it involves a number of thermal layers through which heat transfer is observed. The analysis was performed using a simple, known in the literature and well verified Berman’s model of steam condensation in the presence of non-condensable gases. Adapted to the geometry of the condenser, the model enables, for instance, to recognise places where non-condensable gases are concentrated. By describing with sufficient precision thermodynamic processes taking place in the vicinity of the heat transfer area segment, it is possible to determine the distributions of thermodynamic parameters on the boundaries between successive layers. The obtained results allow for the recognition of processes which contribute in varying degrees to irreversible energy degradation during steam condensation in various parts of the examined device.

Go to article

Authors and Affiliations

Zbigniew Drożyński
Download PDF Download RIS Download Bibtex

Abstract

Heat and mass transfer stretched flow of an incompressible, electrically conducting Jeffrey fluid has been studied numerically. Nanoparticles are suspended in the base fluid and it has many applications such as cooling of engines, thermal absorption systems, lubricants fuel cell, nanodrug delivery system and so on. Temperature dependent variable thermal conductivity with Rosseland approximation is taken into account and suction effect is employed in the boundary conditions. The governing partial differential equations are first transformed into set of ordinary differential equations using selected similarity transformations, which are then solved numerically using Runge-Kutta-Felhberg fourth-fifth order method along with shooting technique. The flow, heat and mass transfer characteristics with local Nusselt number for various physical parameters are presented graphically and a detailed discussion regarding the effect of flow parameters on velocity and temperature profiles are provided. It is found that, increase of variable thermal conductivity, radiation, Brownian motion and thermophoresis parameter increases the rate of heat transfer. Local Nusselt number has been computed for various parameters and it is observed that, in the presence of variable thermal conductivity and Rosseland approximation, heat transfer characteristics are higher as compared to the constant thermal conductivity and linear thermal radiation.

Go to article

Authors and Affiliations

M. Archana
B.J. Gireesha
M.M. Rashidi
B.C. Prasannakumara
R.S.R. Gorla
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study was to compare and analyze the gasification process of beech wood. The experimental investigation was conducted inside a gasifier, which can be operated in downdraft and updraft gasification system. The most important operating parameter studied in this paper was the influence of the amount of supply air on the temperature distribution, biomass consumption and syngas calorific value. The results show that the amount of air significantly influences the temperature in the combustion zone for the downdraft gasification process, where temperature differences reached more than 150 ◦C.The increased amount of air supplied to the gasifier caused an increase in fuel consumption for both experimental setups. Experimental results regarding equivalence ratio show that for value below 0.2, the updraft gasification is characterized by a higher calorific value of producer gas, while for about 0.22 a similar calorific value (6.5 MJ/Nm3) for both gasification configurations was obtained. Above this value, an increase in equivalence ratio causes a decrease in the calorific value of gas for downdraft and updraft gasifiers.

Go to article

Authors and Affiliations

Jacek Kluska
Mateusz Ochnio
Paweł Kazimierski
Dariusz Kardaś
Download PDF Download RIS Download Bibtex

Abstract

The present paper describes a cycle, which may be applied in sewage treatment plants as a system to convert biological waste into process heat and electricity. In sludge stabilization processes anaerobic fermentation acts as the source of methane, which can be used then to generate heat and electric current in gas turbines. Products of high-temperature oxidation can be utilized in organic Rankine cycles to generate electric power. Waste heat is used for heating the fermenting biomass. Energy balance equations mentioned in the thesis: organic Rankine cycle, regenerative gas turbine engine, anaerobic sludge stabilization system.

Go to article

Authors and Affiliations

Robert Matysko
Download PDF Download RIS Download Bibtex

Abstract

Experimental investigation of natural convection heat transfer in heated vertical tubes dissipating heat from the internal surface is presented. The test section is electrically heated and constant wall heat flux is maintained both circumferentially and axially. Four different test sections are taken having 45 mm internal diameter and 3.8 mm thickness. The length of the test sections are 450 mm, 550 mm, 700 mm and 850 mm. Ratios of length to diameter of the test sections are taken as 10, 12.22, 15.56, and 18.89. Wall heat fluxes are maintained at 250–3341 W/m2. Experiments are also conducted on channels with internal rings of rectangular section placed at various distances. Thickness of the rings are taken as 4 mm, 6 mm, and 8 mm. The step size of the rings varies from 75 mm to 283.3 mm. The nondimensional ring spacing, expressed as the ratios of step size to diameter, are taken from 1.67 to 6.29 and the non-dimensional ring thickness, expressed as the ratios of ring thickness to diameter are taken from 0.089 to 0.178. The ratios of ring spacing to its thickness are taken as 9.375 to 70.82. The effects of various parameters such as length to diameter ratio, wall heat flux, ring thickness and ring spacing on local steady-state heat transfer behavior are observed. From the experimental data a correlation is developed for average Nusselt number and modified Rayleigh number. Another correlation is also developed for modified Rayleigh number and modified Reynolds number. These correlations can predict the data accurately within ±10% error.

Go to article

Authors and Affiliations

Ramesh Chandra Nayak
Manmatha Kumar Roul
Saroj Kumar Sarangi
Download PDF Download RIS Download Bibtex

Abstract

The thermodynamic properties, which are the important bulk properties for solids, have been investigated for ZrB2 under pressure through the quasi harmonic Debye model. The dependences of thermal expansion, Gruneisen parameter, Debye temperature and specific heat on pressure P are successfully obtained. The obtained results are in a good agreement with the available experimental and other theoretical data.

Go to article

Authors and Affiliations

Tanveer Ahmad Wani
Basant Kumar Das
Download PDF Download RIS Download Bibtex

Abstract

The paper describes a fuel cell based system and its performance. The system is based on two fuel cell units, DC/DC converter, DC/AC inverter, microprocessor control unit, load unit, bottled hydrogen supply system and a set of measurement instruments. In the study presented in the paper a dynamic response of the proton exchange membrane (PEM) fuel cell system to unit step change load as well as to periodical load changing cycles in the form of semi-sinusoidal and trapezoidal signals was investigated. The load was provided with the aid of an in-house-developed electronic load unit, which was fully PC controlled. The apparatus was commissioned by testing the steady-state operation of the module. The obtained efficiency of the fuel cell shows that the test apparatus used in the study provides data in substantial agreement with the manufacturer’s data.

Go to article

Authors and Affiliations

Janusz T. Cieśliński
Tomasz Z. Kaczmarczyk
Bartosz Dawidowicz
Download PDF Download RIS Download Bibtex

Abstract

The production of thermal energy from solar energy by flat collectors finds nowadays many applications due to their innumerable economic and environmental interests. Currently, conservation of energy resources has become a global priority. On the other hand, given the dizzying demand for energy, has led specialists to find new techniques, such as renewable energies (solar, wind and geothermal). The present work is a contribution, by numerical simulation, to the study of heat transfer in flat solar collectors. On the basis of some experimental data, several simulation calculations have been carried out in order to determine the influencing parameters allowing better performance of the sensors and ensuring a good homogeneity of the temperature distributions. Based on the observation that, due to the low thermophysical properties of the air used as heat transfer fluid, solar air collectors rather give poor yields. It has been found very useful to have ‘baffling’ obstacles of various shapes and forms in the solar collector duct. This increases the thermal transfer of a coolant, which clearly improves the thermal efficiency of the solar air collector. This article consists mainly of studying the effects on heat transfer of turbulent forced convection by baffles of zigzag shapes, placed in a rectangular channel, using the finite volume method. The pressure-velocity coupling has been processed by the SIMPLEC algorithm. The results are presented in terms of the average Nusselt number and temperature field for different positions.

Go to article

Authors and Affiliations

Nabila Guendouz
Nacereddine Bibi-Triki
Faouzi Didi
Chhafika Zidani

Instructions for authors

Submission of manuscript
Manuscripts should be electronically submitted to the Editorial System http://www.editorialsystem.com/aot. Each manuscript should be accompanied by a cover letter explaining why the manuscript is considered suitable for publication in the journal. The letter should contain:

• full title of the paper,
• full list of authors with affiliations,
• e-mail address of the authors,
• contact address and telephone numbers of the corresponding author.

The cover letter should explicitly state that the manuscript has not been previously published in any language anywhere and that it is not under simultaneous consideration or in press by another journal.

Manuscripts that have been previously rejected, or withdrawn after being returned for modification, may be resubmitted if the major criticisms have been addressed. The cover letter must state that the manuscript is a resubmission, and the former manuscript number should be provided.
All authors of the manuscript are responsible for its content; they must have agreed to its publication and have given the corresponding author the authority to act on their behalf. The corresponding author is responsible for informing the co-authors of the manuscript status throughout the submission, review, and production process.

From January 1, 2024, the authors are requested to submit their paper using a dedicated template provided at the AOT webpage https://www.imp.gda.pl/archives-of-thermodynamics/.


Notes for Contributors

Archives of Thermodynamics publishes original papers which have not previously appeared in other journals. The journal does not have article processing charges (APCs) nor article submission charges. The language of the papers is English. The authors are responsible to prepare papers with good English. All pages should be numbered.

Paper preparation quidelines

1. The manuscript should be written in very good English, using the two-column format provided in the template.

2. The heading should specify the title (as short as possible), author, his/her complete affiliation, town, zip code, country and e-mail. Please indicate the corresponding author. The heading should be followed by Abstract and Keywords.

3. More important symbols used in the paper should be listed in Nomenclature, placed below Abstract and arranged in a column, e.g.:
u – velocity, m/s
v – specific volume, m/kg etc.

The list should begin with Latin symbols in alphabetical order followed by Greek symbols also in alphabetical order and with a separate heading. Subscripts and superscripts should follow Greek symbols and should be identified with separate headings. Physical quantities should be expressed in SI units ( Système International d’Unités). In the template a dedicated area is created to put the nomenclature.

4. All abbreviations should be spelled out first time they are introduced in the text. Abbreviations should also be listed in the Nomenclature.

5. The equations should be each in a separate line. Standard mathematical notation should be used. All symbols used in equations must be clearly defined. The numbers of equations should run consecutively, irrespective of the division of the paper into sections. The numbers should be given in round brackets on the righthand side of the column.

6. Particular attention should be paid to the differentiation between capital and small letters. If there is a risk of confusion, the symbols should be explained (for example small c) in the margins. Indices of more than one level (such as Bfa) should be avoided wherever possible.

7. Computer-generated figures should be produced using bold lines and characters. No remarks should be written directly on the figures, except numerals or letter symbols only. Figures should be as small as possible while displaying clearly all the information requires, and with all lettering readable. The relevant explanations can be given in the caption.

8. The figures, including photographs, diagrams, etc., should be numbered with Arabic numerals in the same order in which they appear in the text. Each figure should have its own caption explaining the content without reference to the text.

9. The figures should also be submitted as separate graphic files in either vector formats (PostScript (PS), Encapsulated PostScript (EPS), preferable, CorelDraw (CDR), etc.) or bitmap formats (Tagged Image File Format (TIFF), Joint Photographic Experts Group (JPEG), etc.), with the resolution not lower than 300 dpi, preferably 600 dpi. These resolutions refer to images sized at dimensions comparable to those of figures in the print journal. Therefore, electronic figures should be sized to fit on single printed page and can have maximum 120 mm x 170 mm.

10. The references for the paper should be numbered in the order in which they are called in the text. Calling the references is by giving the appropriate numbers in square brackets. The references should be listed with the following information provided: the author’s surname and the initials of his/her names, the complete title of the work (in English translation) and, in addition:

The references should be placed after the acknowledgment section. The references citation in the manuscript body should be numbered: [1], [2], etc. Please use the following style of references in bibliography APA – 7th ed:

Journal citation (APA – 7th ed):
[1] Król, J., & Ocłoń, P. (2019). Sensitivity analysis of hybrid combined heat and power plant on fuel and CO2 emission allowances price change. Energy Conversion and Management, 196, 127–148.
doi.org/10.1016/j.enconman.2019.05.090

[2] Zhou, Y., Bi, H., & Wang, H. (2023). Influence of the primary components of the high-speed train on fire heat release rate. Archives of Thermodynamics, 44(1), 37–61.
doi.org/10.24425/ather.2023.145876

When citing scientific papers, it is needed to provide a DOI identifier if available.
Example of citation:
• Król and Ocłoń [1] studied a hybrid CHP sensitivity on fuel and CO2 emission allowances price change.
• Zhou et al. [2] studied the influence of the primary components of the high speed train on fire heat release rate.

Book citation (APA – 7th ed):
[3] Ocłoń, P. (2021). Renewable energy utilization using underground energy systems (1st ed.). Springer Nature.
Example of citation:
• Ocłoń et al. [3] presented renewable energy systems for heating cooling and electrical energy production in buildings.

Book chapter citation (APA – 7th ed):
[4] Ciałkowski, M., & Frąckowiak, A. (2014). Boundary element method in inverse heat conduction problem. In Encyclopedia of Thermal Stresses (pp. 424–433). Springer Netherlands.
Example of citation:
• Ciałkowski and Frąckowiak [4] presented a Boundary element method application for solving inverse heat conduction problems.

Conference proceedings (APA – 7th ed):
[5] Pourghasemi, B., & Fathi, N. (2023). Validation and verification analyses of turbulent forced convection of Na and NaK in miniature heat sinks. ASME 2023 Verification, Validation, and Uncertainty Quantification Symposium, 17-19 May, Baltimore, USA.
Example of citation:
• Pourghasemi and Fathi [5] validated and verified turbulent forced convection of Na and NaK in miniature heat sinks.
For works originally published in a language other than English, the language should be indicated in parentheses at the end of the reference. Authors are responsible for ensuring that the information in each reference is complete and accurate, including the DOI number.

11. As the papers are published in English, the authors who are not native speakers of English are obliged to have the paper thoroughly reviewed language-wise before submitting for publication. When the Editors or Reviewers assess that the writing English of the manuscript is poor, the authors are obliged to correct it, and provide a Certificate of English Editing as attachment in Editorial System.

Further information

All manuscripts will undergo some editorial modification. The paper proofs (as PDF file) will be sent by e-mail to the corresponding author for acceptance, and should be returned within two weeks of receipt. Within the proofs corrections of minor and typographical errors in: author names, affiliations, articles titles, abstracts and keywords, formulas, symbols, grammatical error, details in figures, etc., are only allowed, as well as necessary small additions. The changes within the text will be accepted in case of serious errors, for example with regard to scientific accuracy, or if authors reputation and that of the journal would be affected. Submitted material will not be returned to the author, unless specifically requested. A PDF file of published paper will be supplied free of charge to the Corresponding Author. Submission of the manuscript expresses at the same time the authors consent to its publishing in both printed and electronic versions.

Transfer of Copyright Agreement

All papers are published under lincense CC BY 4.0. Once a paper has been accepted for publication, as a condition of publication, the authors are asked to send a scanned copy of the signed original of the Transfer of Copyright Agreement, signed by the Corresponding Author on behalf of all authors.

This page uses 'cookies'. Learn more