In a series of recent papers we have shown how the continuum mechanics can be extended to nano-scale by supplementing the equations of elasticity for the bulk material with the generalised Young-Laplace equations of surface elasticity. This review paper begins with the generalised Young-Laplace equations. It then generalises the classical Eshelby formalism to nano-inhomogeneities; the Eshelby tensor now depends on the size of the inhomogeneity and the location of the material point in it. The generalized Eshelby formalism for nano-inhomogeneities is then used to calculate the strain fields in quantum dot (QD) structures. This is followed by generalisation of the micro-mechanical framework for determining the effective elastic properties of heterogeneous solids containing nano-inhomogeneities. It is shown that the elastic constants of nanochannel-array materials with a large surface area can be made to exceed those of the non-porous matrices through pore surface modification or coating. Finally, the scaling laws governing the properties of nano-structured materials are given.
To explore the basic principles of hierarchical materials designed from nanoscale and up, we have been studying the mechanics of robust and releasable adhesion nanostructures of gecko [1]. On the question of robust adhesion, we have introduced a fractal-like hierarchical hair model to show that structural hierarchy allows the work of adhesion to be exponentially enhanced as the level of structural hierarchy is increased. We show that the nanometer length scale plays an essential role in the bottom-up design and, baring fracture of hairs themselves, a hierarchical hair system can be designed from nanoscale and up to achieve flaw tolerant adhesion at any length scales. For releasable adhesion, we show that elastic anisotropy leads to orientation-dependent adhesion strength. Finite element calculations revealed that a strongly anisotropic attachment pad in contact with a rigid substrate exhibits essentially two levels of adhesion strength depending on the direction of pulling.
We present a review of recent technical developments in Lattice Boltzmann Equations, as applied to single-phase flows with and without slip lenghts at the wall and for multi-phase flows in presence of hydrophobic walls. The interplay between roughness and hydrophobicity is discussed for microfluidics application. The issue of finite Knudsen effects is also addressed.
Mesoscale flows of liquid are of great importance for various nano- and biotechnology applications. Continuum model do not properly capture the physical phenomena related to the diffusion effects, such as Brownian motion. Molecular approach on the other hand, is computationally too expensive to provide information relevant for engineering applications. Hence, the need for a mesoscale approach is apparent. In recent years many mesoscale models have been developed, particularly to study flows of gas. However, mesoscale behaviour of liquid substantially differs from that of gas. This paper presents a numerical study of micro-liquids phenomena by a Voronoi Dissipative Particle Dynamics method. The method has its origin from the material science field and is one of very few numerical techniques which can describe correctly molecular diffusion processes in mesoscale liquids. This paper proves that correct prediction of molecular diffusion effects plays predominant role on the correct prediction of behaviour of immersed structures in the mesoscopic flow.
The paper presents the results of numerical simulation of processes aimed at production of nanostructures with the use of oil emulsions in water. The appropriate molecular models of water and oil, as well as the model of the substance which would sediment at the water – oil interface, are looked for. Such substance, after suitable solidification, would become the main component of the produced material. For the described simulations, the Molecular Dynamics method has been used throughout this paper.
Effects of confinement on mechanical, structural and thermodynamic properties of uniform fluids are very well understood. In contrast, a general theory based on statistical thermodynamics for confined nonuniform and non-isotropic phases, such as the lamellar phase, is in its infancy. In this review we focus on the lamellar phase confined in a slit or in a pipe in order to illustrate various effects of confinement. We limit ourselves to the results obtained by M. Tasinkevych, V. Babin and the author for lamellar phases in oil-water-surfactant mixtures within a generic semi-microscopic model, using a mean-field approximation. We show that compared to isotropic fluids the excess grand potential contains additional terms associated with structural deformations. These terms depend on the type of the confining walls, the shape of the container and on the thickness of the lamella. As a result of the dependence of the structure of the confined lamellar phase on the shape of the container, capillary lamellarization and capillary delamellarization is found in slits and in pipes respectively.
Effects from adsorption of organic species on the surface of nanomaterials have been investigated. Exposure to organic contaminants during material processing, handling and environmental exposure is unavoidable during the manufacturing process of nanoscale materials. In addition, at the nanoscale, surface area to volume ratios increase and surface effects will have an increasing influence on the material properties. Experimentally measured electrical properties of gold nanowires and composition will be presented. The results indicated that C, C—O—C and C=O are adsorbed at the surface of the gold nanowires. These surface contaminants are believed to cause the increase in measured resistivity. A theoretical study was performed to investigate diffusion of these contaminants into the first surface layer, which may act as scattering mechanisms for current flow.
The technique of electrospinning was employed to fabricate uniform one-dimensional inorganic-organic composite nanofibers at room temperature from a solution containing equal volumes of aluminum 2, 4-pentanedionate in acetone and polyvinylpyrrolidone in ethanol. Upon firing and sintering under carefully pre-selected time-temperature profiles (heating rate, temperature and soak time), high-purity and crystalline alumina nanofibers retaining the original morphological features present in the as-spun composite (cermer) fibers were obtained. Tools such as laser Raman spectroscopy, scanning and transmission electron microscopy together with energy dispersive spectroscopy and selected area electron diffraction were employed to follow
the systematic evolution of the ceramic phase and its morphological features in the as-spun and the fired fibers. X-ray diffraction was used to identify the crystalline fate of the final product.
We present a mesoscopic model able to capture the physics of drops moving across patterned surfaces. In this model, interfaces appear naturally, and both chemical and topological patterning can be incorporated with relative ease, making it particularly suitable to study the behaviour of evolving drops.We summarise results on drop dynamics, including drops spreading on a chemically patterned surface, using a hydrophobic grid to alleviate mottle and the transition and dynamics of drops moving across a superhydrophobic surface.
The pool boiling characteristics of dilute dispersions of alumina, zirconia and silica nanoparticles in water were studied. These dispersions are known as nanofluids. Consistently with other nanofluid studies, it was found that a significant enhancement in Critical Heat Flux (CHF) can be achieved at modest nanoparticle concentrations (<0.1% by volume). Buildup of a porous layer of nanoparticles on the heater surface occurred during nucleate boiling. This layer significantly improves the surface wettability, as shown by a reduction of the static contact angle on the nanofluid-boiled surfaces compared with the pure-water-boiled surfaces. CHF theories support the nexus between CHF enhancement and surface wettability changes. This represents a first important step towards identification of a plausible mechanism for boiling CHF enhancement in nanofluids.
The study of liquid crystalline assemblies, with an emphasis on biological phenomena, is now accessible using newly developed microdevices integrated with X-ray analysis capability. Many biological systems can be described in terms of gradients, mixing, and confinement, all of which can be mimicked with the use of appropriate microfluidic designs. The use of hydrodynamic focusing creates well-defined mixing conditions that vary depending on parameters such as device geometry, and can be quantified with finite element modelling.We describe experiments in which geometry and strain rate induce finite changes in liquid crystalline orientation. We also demonstrate the online supramolecular assembly of lipoplexes. The measurement of lipoplex orientation as a function of flow velocity allows us to record a relaxation process of the lipoplexes, as evidenced by a remarkable 4-fold azimuthal symmetry. All of these processes are accessible due to the intentional integration of design elements in the microdevices.
Some materials-related microstructural problems calculated using the phase-field method are presented. It is well known that the phase field method requires mesh resolution of a diffuse interface. This makes the use of mesh adaptivity essential especially for fast evolving interfaces and other transient problems. Complex problems in 3D are also computationally challenging so that parallel computations are considered necessary. In this paper, a parallel adaptive finite element scheme is proposed. The scheme keeps the level of node and edge for 2D and level of node and face for 3D instead of the complete history of refinements to facilitate derefinement. The information is local and exchange of information is minimized and also less memory is used. The parallel adaptive algorithms that run on distributed memory machines are implemented in the numerical simulation of dendritic growth and capillary-driven flows.
The present contribution reports on the rheological investigations concerning influence of high hydrostatic pressure on the molecular structure of gelatin gels. For the purpose of the study, a torsional shear wave rheometer for in-situ investigations of viscoelastic substances under high pressure was developed. Small amplitude vibrations generated by piezoelectric elements are used to determine the storage modulus of the investigated medium. The system is able to stand pressures up to 300 MPa. The experiments have been carried out with household gelatin (0.1 w/w aqueous solution). The gelification curves revealed similar time course. However, the values of G0 obtained for the gels curing 300 minutes under 100 MPa and 200 MPa were observed to be respectively 2.1 and 4 times higher than at ambient conditions. The increased number of triple helix junction zones is hypothesised to be the cause of this phenomenon as a result of reinforcement of the hydrogen bonds due to pressure. An attempt to cognize the characteristic dimensions of the molecular structure based on the theory of rubber elasticity is made.
In this work we discuss 3D selfconsistent solution of Poisson and Schrödinger equations for electrostatically formed quantum dot. 3D simulations give detailed insight into the energy spectrum of the device and allow us to find values of respective voltages ensuring given number of electrons in the dot. We performed calculations for fully 3D potential and apart from that calculations for the same potential separated into two independent parts, i.e. regarding to the plane of 2DEG and to the direction perpendicular to the meant plane. We found that calculations done for the two independent parts of the potential give good information about quantum dot properties and they are much faster compared to fully 3D simulations.
A number of micromechanical investigations have been performed to predict behaviour of composite interfaces, showing that the detailed behaviour of the material at these interfaces frequently dominates the behaviour of the composite as a whole. The interfacial interaction is an extremely complex process due to continuous evolution of interfacial zones during deformation and this is particularly true for carbon nanotubes since the interfacial interaction is confined to the discrete molecular level. The atomic strain concept based upon Voronoi tessellation allows analyzing the molecular structure atom by atom, which may give a unique insight into deformation phenomena operative at molecular level such as interface behaviour in nanocomposites.
Guide for Authors
https://www.editorialsystem.com/bpasts/journal/for_authors/
As of January 1st, 2025, there are changes in the fees for open access publications in Bulletin of the Polish Academy of Sciences Technical Sciences: 2000 PLN (approx. 500 EUR) - up to 8 pages of the journal format and mandatory over-length charges of 250 PLN (approx. 60 EUR) per page (see the above link with instructions for Authors for details)
Guide for Reviewers
https://www.editorialsystem.com/bpasts/journal/for_reviewers/
Call for Papers
https://www.editorialsystem.com/bpasts/journal/call_for_papers/
Guide for Guest Editors
https://www.editorialsystem.com/editor/bpasts/journal/page1/