Details Details PDF BIBTEX RIS Title Characteristics and Applications of Silicon Carbide Power Devices in Power Electronics Journal title International Journal of Electronics and Telecommunications Yearbook 2010 Volume vol. 56 Issue No 3 Authors Nisha Kondrath ; Kazimierczuk, Marian Divisions of PAS Nauki Techniczne Publisher Polish Academy of Sciences Committee of Electronics and Telecommunications Date 2010 Identifier DOI: 10.2478/v10177-010-0030-3 ; eISSN 2300-1933 (since 2013) ; ISSN 2081-8491 (until 2012) Source International Journal of Electronics and Telecommunications; 2010; vol. 56; No 3 References Abou-Alfotouh A. (2006), A 1 MHz hard switched silicon carbide DC/DC converter, IEEE Transactions on Power Electronics, 21, 4, 880. ; Bhatnagar M. (1993), Comparison of 6H-SiC, 3C-SiC, and Si for power devices, IEEE Transactions on Electronic Devices, 40, 3, 645. ; C. Carter, Jr. (1987), Growth of single crystal boules of 6H-SiC, null. ; J. Cooper, Jr (1997), Silicon Carbide - A review of fundamental questions are applications to current device technology. ; Ericsen T. (2002), Future navy application of wide bandgap power semiconductor devices, Proceedings of the IEEE, 90, 6, 1077. ; Garuda V. (1998), High temperature performance characterization of a buck converter using SiC and Si devices, null, 1561. ; Hefner A. (2001), SiC power diodes provide breakthrough performance for a wide range of applications, IEEE Transactions on Power Electronics, 16, 2, 273. ; Helfrick A. (1999), Investigations relative to the mitigation of interference to analog and digital radio-based avionics systems, null, 1. ; S. Hodge, Jr (2004), SiC Schottky diodes in power factor correction, Power Electronic Technology, 30, 8, 14. ; Ivanov P. (1995), Semiconductor silicon carbide - technology and devices: A review, Semiconductors, 29, 11, 1003. ; Baliga B. (1995), Power Semiconductor Devices. ; Jovanović M. (2005), State-of-the-art, single-phase, active power-factor-correction techniques for high-power applications - an overview, IEEE Transactions on Industrial Electronics, 52, 3, 701. ; Kazimierczuk M. (2008), Pulse-Width Modulated DC-DC Power Converters, doi.org/10.1002/9780470694640 ; Lebron-Velilla R. (2003), Silicon carbide diodes performance characterization and comparison with silicon devices, null. ; Linewih H. (2002), Design and application of SiC power MOSFET. ; McNutt T. (2007), Silicon carbide power MOSFET model and parameter extraction sequence, IEEE Transactions on Power Electronics, 22, 2, 353. ; Neudeck P. (2000), SiC Technology. ; Neudeck P. (1998), Non-micropipe dislocations in 4H-SiC devices: electrical properties and device technology implications, null, 107. ; Onda S. (1997), Silicon Carbide - A review of fundamental questions are applications to current device technology. ; Östling M. (1998), Recent advances in SiC materials and device technologies in Sweden, null, 46. ; Ozpineci B. (2002), Silicon carbide power device characterization for HEVs, null, 93. ; Ozpineci B. (2003), System level benefits of silicon carbide power devices in dcdc converters, null. ; Sarro P. (2000), Silicon carbide as a new MEMS technology, Sensors and Actuators A: Physical, 82, 1-3, 210. ; Scheick L. (2004), Displacement damage-induced catastrophic second breakdown in silicon carbide Schottky power diodes, IEEE Transactions on Nuclear Science, 51, 6, 3193. ; Spiazzi G. (2003), Performance evaluation of a Schottky SiC power diode in a boost PFC application, IEEE Transactions on Power Electronics, 18, 6, 1249. ; Sriram S. (1997), Silicon Carbide - A review of fundamental questions are applications to current device technology. ; Tian Z. (2005), Characteristics of 6H-silicon carbide PIN diodes prototyping by laser doping, Journal of Electronic Materials, 34, 4, 430.