Search results

Filters

  • Journals
  • Authors
  • Contributor
  • Keywords
  • Date
  • Type

Search results

Number of results: 8239
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The Pb(II)-resistant bacterium was isolated from heavy metal-contained soils and used as a biosorbentto remove Pb(II). The strain was identified as Enterobacter sp. based on the 16S rRNA sequence analysis. Theeffect of biosorption properties (pH value, Pb(II) concentration, bacterial concentration and temperature) onPb(II) was investigated by batch experiments. Results of FTIR and XPS showed that the biosorption process mainly involved some oxygen-containing groups (-OH and -COOH groups). The experimental results and equilibrium data were fitted by pseudo-second-order kinetic model and Langmuir model, respectively. The experimental biosorption isotherms fitted the Langmuir model, and the maximum biosorption capacity was 40.75 mg/g at 298 K. The calculated ΔGо and ΔHо were –4.06 and 14.91(kJ/mol), respectively, which indicated that biosorption process was spontaneous and endothermic. Results show that Enterobacter sp. will be an efficient biosorbent for Pb(II) removal.
Go to article

Bibliography

  1. Abdi, O. & Kazemi, M. (2015). A review study of biosorption of heavy metals and comparison between different biosorbents. Journal of Materials and Environmental Science, 6, pp. 1386-1399.
  2. Ahalya, N., Ramachandra, T.V. & Kanamadi, R.D. (2003). Biosorption of heavy metals. Research Journal of Chemistry and Environment, 7, pp. 235-250.
  3. Baruah, R., Kalita, D.J., Saikia, B.K., Gautam, A., Singh, A.K. & Deka Boruah, H.P. (2016). Native hydrocarbonoclastic bacteria and hydrocarbon mineralization processes. International Biodeterioration & Biodegradation, 112, pp. 18-30. DOI: 10.1016/j.ibiod.2016.04.032
  4. Baysal, Z., Cinar, E., Bulut, Y., Alkan, H. & Dogru, M. (2009). Equlibrium and thermodynamic studies on biosorption of Pb(II) onto Candida albicans biomass. Journal of Hazardous Materials, 161, pp. 62-67. DOI: 10.1016/j.jhazmat.2008.02.122
  5. Bobik, M., Korus, I. & Dudek, L. (2017). The effect of magnetite nanoparticles synthesis conditions on their ability to separate heavy metal ions, Archives of Environmental Protection,43, pp. 3-9. DOI: 10.1515/aep-2017-0017
  6. Boyanov, M. I., Kelly, S. D., Kemner, K M., Bunker, B. A., Fein, J. B. & Fowle, D. (2003). Adsorption of cadium to Bacillus subtilis bacterial cell walls: A pH-dependent X-ray absorption fine structure spectroscopy study. Geochimica Cosmochimica Acta, 67, pp. 3299-3311. DOI: 10.1016/S0016-7037(02)01343-1
  7. Bulut, Y., Gozubenli, N. & Aydin, H. (2007). Equilibrium and kinetics studies for adsorption of direct blue 71 from aqueous solution by wheat shells. Journal of Hazardous Materials, 144, pp. 300-306. DOI: 10.1016/j.jhazmat.2006.10.027
  8. Chen, C., Hu, J. & Wang, J. L. (2020). Biosorption of uranium by immobilized Saccharomyces cerevisiae. Journal of Environmental Radioactivity, 213, pp. 106-158. DOI: 10.1016/j.jenvrad.2020.106158
  9. Chen, Z., Pan, X., Chen, H., Guan, X. & Lin, Z. (2016). Biomineralization of Pb(II) into Pb-hydroxyapatite induced by Bacillus cereus 12-2 isolated from lead-zinc mine tailings. Journal of Hazardous Materials, 301, pp. 531-537. DOI: 10.1016/j.jhazmat.2015.09.023
  10. Chojnacka, K., Chojnacki, A. & Gorecka, H. (2005). Biosorption of Cr(III), Cd(II), and Cu(II) ions by blue-green algae Spiruline sp: Kinetics, equilibrium and the mechanism of the process. Chemosphere, 59, pp. 75-84. DOI: 10.1016/j.chemosphere.2004.10.005
  11. Chojnacka, K., Chojnacki, A. & Gorecka, H. (2004). Trace element removal by Spirulina sp. from copper smelter and refinery effluents. Hydrometallurgy, 73, pp. 147-153.
  12. Chuah, T. G., Jumasiah, A., Azni, I., Katayon, S. & Choong, S. Y. (2005). Rice husk as a potentially low-cost biosorbent for heavy metal and dye removal: an overview. Desalination, 175, pp. 305-316. DOI: 10.1016/j.hydromet.2003.10.003
  13. Çolak, F., Atar, N., Yazıcıoğlu, D. & Olgun, A. (2011). Biosorption of lead from aqueous solutions by bacillus strains possessing heavy-metal resistance. Chemical Engineering Journal, 173, pp. 422-428. DOI: 10.1016/j.cej.2011.07.084
  14. Fourest, E. & Roux, J. C. (1992). Heavy metal biosorption by fungal mycelial by-products: mechanisms and influence of pH. Applied Microbiology Biotechnology, 37, pp. 399-403.
  15. Gupta, V. K., Shrivastava, A. K. & Jain, N. (2001). Biosorption of chromium from aqueous solutions by green algae Spirogyra species. Water Research, 35, pp. 4079-4085. DOI: 10.1016/S0043-1354(01)00138-5
  16. Han, R., Li, H., Li, Y., Zhang, J., Xiao, H. & Shi, J. (2006). Biosorption of copper and lead ions by waste beer yeast. Journal of Hazardous Materials, 137, pp. 1569-1576. DOI: 10.1016/j.jhazmat.2006.04.045
  17. Holan, Z. R., Volesky, B. & Prasetyo, I. (1993). Biosorption of cadmium by biomass of marine algae. Biotechnology and Bioengineering, 41, pp. 819-825.
  18. Kratochvil, D. & Volesky, B. (1998). Advance in the biosorption of heavy metals. Trends Biotechnolgy, 16, pp. 291-300. DOI: 10.1016/S0167-7799(98)01218-9
  19. Ku, Y. & Jung, I. L. (2001). Photocatalytic reduction of Cr(IV) in aqueous solutions by UV irradiation with the presence of titanium dioxide. Water Research, 35, pp. 135-142. DOI: 10.1016/S0043-1354(00)00098-1
  20. Lee, Y. C. & Chang, S. P. (2011). The biosorption of heavy metals from aqueous solution by Spirogyra and Cladophora filamentous macroalgae. Bioresource Technology, 102, pp. 5297-5304. DOI: 10.1016/j.biortech.2010.12.103
  21. Li, D. D., Xu, X. J., Yu, H. W. & Han, X. R. (2017). Characterization of Pb(II) biosorption by psychrotrophic strain Pseudomonas sp. 13 isolated from permafrost soil of Mohe wetland in Northeast China. Journal of Environmental Management, 196, pp. 8-15. DOI: 10.1016/j.jenvman.2017.02.076
  22. Liu, L., Liu, J., Liu, X. T., Dai, C. W., Zhang, Z. X., Song, W. C. & Chu, Y. (2019). Kinetic and equilibrium of U(VI) biosorption onto the resistant bacterium Bacillus amyloliquefaciens. Journal of Environmental Radioactivity, 203, pp. 117-124. DOI: 10.1016/j.jenvrad.2019.03.008
  23. Liu, L., Chen, J. W., Liu, F., Song, W. C. & Sun, Y. B. (2021). Bioaccumulation of uranium by Candida utilis: Investigated by water chemistry and biological effects. Environmental Research, 194, 110691. DOI: 10.1016/j.envres.2020.110691
  24. Liu, L., Zhang, Z. X., Song, W. C. & Chu, Y. N. (2018). Removal of radionuclide U(VI) from aqueous solution by the resistant fungus Absidia corymbifera. Journal of Radioanalytical and Nuclear Chemistry, 318, pp. 1151-1160. DOI: 10.1007/s10967-018-6209-2
  25. Lu, N. Q., Hu, T. J., Zhai, Y. B., Qin, H. Q., Aliyeva, J. & Zhang, H. (2020). Fungal cell with artificial metal container for heavy metals biosorption: Equilibrium, kinetics study and mechanisms analysis. Environmental Research, 182, 109061. DOI: 10.1016/j.envres.2019.109061
  26. Lu, X., Zhou, X. J. & Wang, T. S. (2013). Mechanism of uranium(VI) uptake by saccharomyces cerevisiae under environmentally relevant conditions: Batch, HRTEM, and FTIR studies. Journal of Hazardous Materials, 262, pp. 297-303. DOI: 10.1016/j.jhazmat.2013.08.051
  27. Ma, X. M., Cui, W. G., Yang, L., Yang, Y. Y., Chen, H. F. & Wang, K. (2015). Efficient biosorption of lead(II) and cadmium(II) ions from aqueous solutions by functionalized cell with intracellular CaCO3 mineral scaffolds. Bioresource Technology, 185, pp. 70-78. DOI: 10.1016/j.biortech.2015.02.074
  28. Naik, B. R., Suresh, C., Kumar, N. S. V., Seshaiah, K. & Reddy, A. V. R. (2017). Biosorption of Pb(II) and Ni(II) ions by chemically modified Eclipta alba stem powder: kinetics and equilibrium studies. Separation Science and Technology, 52, pp. 1717-1732. DOI: 10.1080/01496395.2017.1298614
  29. Naik, M. M. & Dubey, S. K. (2013). Lead resistant bacteria: lead resistance mechanisms, their applications in lead bioremediation and biomonitoring. Ecotoxicology and Environment Safety, 98, pp. 1-7. DOI: 10.1016/j.ecoenv.2013.09.039
  30. Naseem, R. & Tahir, S. S. (2011). Removal of Pb(II) from aqueous-acidic solutions by using bentonite as an adsorbent. Water Researce, 35, pp. 3982-3986. DOI: 10.1016/S0043-1354(01)00130-0
  31. Ozdemir, S., Kilinc, E., Poli, A., Nicolaus, B. & Guven, K. (2009). Biosorption of Cd, Cu, Ni, Mn and Zn from aqueous solutions by thermophilic bacteria, Geobacillus toebii sub.sp. Decanicus and Geobacillus thermoleovorans sub. Sp. Stromboliensis: equilibrium, kinetic and thermodynamic studies. Chemical Engineering Journal, 152, pp. 195-206. DOI: 10.1016/j.cej.2009.04.041
  32. Raize, O., Argaman, Y. & Yannai, S. (2004). Mechanisms of biosorption of different heavy metals by brown marine macroalgae. Biotechnology and Bioengineering, 87, pp. 451-458. DOI: 10.1002/bit.20136
  33. Ramrakhiani, L., Ghosh, S. & Majumdar, S. (2016). Surface modification of naturally available biomass for enhancement of heavy metal removal efficiency, upscaling prospects, and management aspects of spent biosorbents: a Review. Applied Biochemistry and Biotechnology, 180, pp. 41-78. DOI: 10.1007/s12010-016-2083-y
  34. Ren, G., Jin, Y., Zhang, C., Gu, H. & Qu, J. (2015). Characteristics of Bacillus sp. PZ-1 and its biosorption to Pb(II). Ecotoxicology and Environment Safety, 117, pp. 141-148. DOI: 10.1016/j.ecoenv.2015.03.033
  35. Sag, Y. & Kutsal, T. (2000). Determination of activation energies of heavy metal ions on Zoogloe ramigera and Rhizopus arrhizus. Biochemical Engineering Journal, 35, pp. 145-151.
  36. Saha, G. C., Hoque, M., Miah, M., Holze, R., Chowdhury, D.A., Khandaker, S. & Chowdhury, S. (2017). Biosorptive removal of lead from aqueous solutions onto taro (colocasiaesculenta(l.) schott) as a low cost bioadsorbent: characterization, equilibria, kinetics and biosorption-mechanism studies. Journal of Environmental Chemical Engineering, 5, 2151-2162. DOI:10.1016/j.jece.2017.04.013
  37. Sahin, Y. & Ozturk, A. (2005). Biosorption of chromium (VI) ions from aqueous solution by the bacterium Bacillus thuringiensis. Process Biochemistry, 40, pp. 1895-1901. DOI: 10.1016/j.procbio.2004.07.002
  38. Selatnia, A., Boukazoula, A., Kechid, N., Bakhti, M. Z., Chergui, A. & Kerchich, Y. (2004). Biosorption of lead (II) from aqueous solution by a bacterial dead Streptomyces rimosus biomass. Biochemical Engineering Journal, 19, pp. 127-135. DOI: 10.1016/j.bej.2003.12.007
  39. Shroff, K. A. & Vaidya, V. K. (2011). Kinetics and equilibrium studies on biosorption of nickel from aqueous solution by dead fungal biomass of Mucor hiemalis. Chemical Engineering Journal, 171, pp. 1234-1245. DOI: 10.1016/j.cej.2011.05.034
  40. Siripongvutikorn, S., Asksonthong, R. & Usawakesmanee, W. (2016). Evaluation of harmful heavy metal (Hg, Pb and Cd) reduction using Halomonas elongata and Tetragenococcus halophilus for protein hydrolysate product. Functional Foods in Health & Disease, 6, pp. 195-205. DOI: 10.31989/ffhd.v6i4.240
  41. Song, W. C., Wang, X. X., Chen, Z. S., Sheng, G. D., Hayat, T., Wang, X. K. & Sun, Y. (2018). Enhanced immobilization of U(VI) on Mucor circinelloides in presence of As (V): Batch and XAFS investigation. Environmental Pollution, 237, pp. 228-236. DOI: 10.1016/j.envpol.2018.02.060
  42. Song, W. C., Wang, X. X., Wen, T., Yu, S. J., Zou, Y. D. & Sun, Y. B. (2016). Immobilization of As(V) in Rhizopus oryzae investigated by batch and XAFS techniques. ACS Omega, 1, pp. 899-906. DOI: 10.1021/acsomega.6b00260
  43. Tabaraki, R., Nateghi, A. & Ahmady-Asbchin, S. (2014). Biosorption of lead (II) ions on Sargassum ilicifolium: Application of response surface methodology. International Biodeterioration Biodegradation, 93, pp. 145-152. DOI: 10.1016/j.ibiod.2014.03.022
  44. Tang, L., Yu, J., Pang, Y., Zeng, G., Deng, Y., Wang, J., Ren, X., Ye, S., Bo, P. & Feng, H. (2017). Sustainable efficient adsorbent: alkali-acid modified magnetic biochar derived from sewage sludge for aqueous organic contaminant removal. Chemical Engineering Journal, 336, pp. 160-169. DOI: 10.1016/j.cej.2017.11.048
  45. Tunali, S., Cabuk, A. & Akar, T. (2006). Removal of lead and copper ions from soil. Chemcal Engineering Journal, 115, pp. 203-211. DOI: 10.1016/j.cej.2005.09.023
  46. Uzun, Y. & Şahan, T. (2017). Optimization with Response Surface Methodology of biosorption conditions of Hg(II) ions from aqueous media by Polyporus Squamosus fungi as a new biosorbent. Archives of Environmental Protection,43, pp. 37-43. DOI 10.1515/aep-2017-0015
  47. Wang, J. L. & Chen, C. (2006). Biosorption of heavy metals by Saccharomyces cerevisiae: A review. Biotechnology Advances, 24, pp. 427-451.
  48. Wang, N., Xu, X., Li, H., Wang, Q., Yuan, L. & Yu, H. (2017). High performance and prospective application of xanthate-modified thiourea chitosan sponge-combined Pseudomonas putida and Talaromyces amestolkiae biomass for Pb(II) removal from wastewater. Bioresource Technology, 233, pp. 58-66. DOI: 10.1016/j.biortech.2017.02.069
  49. Wang, T. S., Zheng, X. Y., Wang, X. Y., Lu, X. & Shen, Y. H. (2017). Different biosorption mechanisms of Uranium(VI) by live and heat-killed Saccharomyces cerevisiae under environmentally relevant conditions. Journal of Environmental Radioactivity, 167, pp. 92-99. DOI: 10.1016/j.jenvrad.2016.11.018
  50. Zheng, X. Y., Shen, Y. H., Wang, X. R., & Wang, T. S. (2018). Effect of pH on uranium(VI) biosorption and biomineralization by Saccharomyces cerevisiae. Chemosphere, 203, pp.109-116. DOI: 10.1016/j.chemosphere.2018.03.165
Go to article

Authors and Affiliations

Lei Liu
1 2
Mengya Xia
1
Jianwen Hao
1
Haoxi Xu
1
Wencheng Song
2 3

  1. School of Environment and Chemical Engineering, Anhui Vocational and Technical College,Hefei, 230011, P.R. China
  2. Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, P. R. China
  3. Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology,Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P.R. China
Download PDF Download RIS Download Bibtex

Abstract

Cereal cyst nematodes (Heterodera spp.) are distributed globally and cause severe production losses of small grain cereals. To investigate the occurrence of cereal cyst nematodes in wheat-growing areas of Algeria, a survey was conducted and 27 cereal cyst nematode populations were collected. The populations were initially identified based on their morphological and morphometric characters, followed by molecular methods using speciesspecific primers, complemented by ITS-rDNA sequences. The morphological and morphometric features of second-stage juveniles (J2s) and cysts supported the presence of three Heterodera species: H. avenae, H. filipjevi and H. hordecalis. All morphological values of these distinct populations were very similar to those previously described for these species. Using species-specific primers for H. avenae and H. filipjevi, the specific bands of 109 bp and 646 bp confirmed the morphological identification of both species, respectively. In addition, the internal transcribed spacer (ITS) regions were sequenced to study the diversity of the 27 populations. These sequences were compared with those of Heterodera species available in the GenBank database (www.ncbi.nlm.nih.gov) and re-confirmed the identity of the species. Nineteen sequences of ITS-rDNA were similar (99–100%) to the sequences of H. avenae published in the GenBank, six sequences were similar (99–100%) to H. hordecalis, and two were similar (98–99%) to H. filipjevi. The results of this study are of great value to breeding programs and extension services, where they will contribute to the design of control measures to keep damaging nematodes in check.

Go to article

Authors and Affiliations

Djamel Smaha
Fouad Mokrini
Mustafa İmren
Aissa Mokabli
Abdelfattah A. Dababat
Download PDF Download RIS Download Bibtex

Abstract

There are few reports in literature about the selectivity of postemergence application of herbicides for the control of eudicotyledon weeds (broadleaf) in chickpea. For this reason, the aim of this study was to investigate the selectivity of diphenyl-ether herbicides in chickpea influenced by the herbicides and application rates. A field experiment was conducted from February to June 2017 in Urutaí, state of Goiás, Brazil. Cultivar BRS Aleppo was used in the experiment. The experiment was set up in a randomized block design with 2 × 3 + 1 factorial arrangement and three replications. The first factor was herbicides (fomesafen and lactofen) with the second factor being herbicide rate (50, 75, and 100% of referenced rate) plus an untreated check as a comparison. The applied rates of herbicides were 250 and 180 g ⋅ ha–1 of fomesafen and lactofen, respectively. The selectivity of herbicides was evaluated according to agronomic characteristics (plant population, height, dry matter, number of pods per plant and 100-grain weight) and yields. Both herbicides, regardless of dosage, were selective in chickpea cultivation, even exhibiting leaf necrosis symptoms with visible injuries below 20% with no effect on yield.

Go to article

Authors and Affiliations

Luís Gustavo Barroso Silva
Lucas da Silva Araújo
Daniel José Gonçalves
Mateus Souza Valente
Anderson Rodrigo da Silva
Warley Marcos Nascimento
Paulo César Ribeiro da Cunha
Download PDF Download RIS Download Bibtex

Abstract

In the present study, the effects of 10, 20, 30 ppm hormone mixtures (indole-3-acetic acid + gibberellic acid + kinetin) with 0.1, 0.3, 0.5 and 1 ppm zinc (Zn) concentrations alone and their mixtures on the cambial activity of sour cherry (Cerasus vulgaris Miller) cuttings were investigated. Morphological and anatomical developments of the plants were observed. The leaves of the plants treated with zinc were found to be greener than the control. Plants treated with zinc faded earlier than the control. The cambial zone thickness, the cambial zone cell line, the radial and tangential lengths of the cambial zone cells decreased with increasing concentrations of zinc and increased with increasing concentrations of hormones. The radial and tangential wall widths of the cambial zone cells increased with increasing zinc concentrations and decreased with increasing hormone concentrations. As a result, in the 0.1, 0.3, 0.5 and 1 ppm Zn concentrations, the cambial zone thickness decreased by 10, 28, 50 and 65%, respectively, compared to the control. Thirty ppm hormone mixture – H.M. (indole-3-acetic acid + gibberellic acid + kinetin) increased the cambial zone thickness by 65, 15, 5% in 0.1, 0.3 and 0.5 Zn, respectively, compared to the control. It was found that plant hormones importantly improved the harmful effects of zinc on the cambial activity of the plant cuttings.

Go to article

Authors and Affiliations

Kemal Yuce
Bekir Tileklioglu
Download PDF Download RIS Download Bibtex

Abstract

Globally more than 5.2 billion hectares of farming fields are damaged through erosion, salinity and soil deterioration. Many salt stress tolerant bacteria have plant growth promoting (PGP) characteristics that can be used to overcome environmental stresses. Isolation and screening of salt-tolerant endophytes from Salicornia brachiata were achieved through surface sterilization of leaves followed by cultivation on 4% NaCl amended media. Performance of isolates towards indole-3-acetic acid (IAA) production, phosphate solubilization, ACC deaminase activity, ammonia production, siderophore production and stress tolerance were determined. On the basis of the highest plant growth promoting activity, SbCT4 and SbCT7 isolates were tested for plant growth promotion with wheat and maize crops. In the present study, a total of 12 morphologically distinct salt-tolerant endophytic bacteria was cultured. Out of 12 isolates, 42% of salt-tolerant endophytes showed phosphate solubilization, 67% IAA production, 33% ACC-deaminase activity, 92% siderophore production, 41.6% ammonia production and 66% HCN production. A dendrogram, generated on the basis of stress tolerance, showed two clusters, each including five isolates. The bacterial isolates SbCT4 and SbCT7 showed the highest stress tolerance, and stood separately as an independent branch. Bacterial isolates increased wheat shoot and root dry weights by 60–82% and 50–100%, respectively. Similarly, improved results were obtained with maize shoot (27–150%) and root (80–126%) dry weights. For the first time from this plant the bacterial isolates were identified as Paenibacillus polymyxa SbCT4 and Bacillus subtilis SbCT7 based on phenotypic features and 16S rRNA gene sequencing. Paenibacillus polymyxa SbCT4 and B. subtilis SbCT7 significantly improved plant growth compared to non-inoculated trials.

Go to article

Authors and Affiliations

Arun Karnwal
Download PDF Download RIS Download Bibtex

Abstract

Rice blast is one of the most destructive rice diseases known to cause considerable yield losses globally. Plant growth promoting rhizobacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) are closely associated with rice plants and improve plant growth and health. To determine how isolated bacteria trigger rice growth, an assessment of phosphate solubilization and auxin production mechanisms was carried out in vitro and in vivo. In this study, the interactions between PGPR and Rhizophagus irregularis were evaluated in wildtype and CYCLOPS mutant plants to provide a sustainable solution against blast disease and reduce the amount of yield loss. Importantly, Bacillus subtilis UTSP40 and Pseudomonas fluorescens UTSP50 exhibited a suppressive effect on AMF colonization which shows the probable existence of a functional competition between AMF and PGPR to dominate the rhizosphere. On the other hand, R. irregularis decreased the biocontrol activity of B. subtilis UTSP40 in wild type, although this reduction was not significant in mutant plants. Results showed that the same defense-related genes were induced in the roots of wild type colonized by B. subtilis UTSP40 and R. irregularis. Therefore, plant cell programs may be shared during root colonization by these two groups of beneficial microorganisms.

Go to article

Authors and Affiliations

Samira Peighami Ashnaei
Download PDF Download RIS Download Bibtex

Abstract

Interest in growing roses in Poland is related to the production of cut flowers as ornamentals and of petals and hips for cosmetics or food products. However, recently there has been an increasing number of reports of pest damage on rose plantations. In the case of fruits the damage has been attributed to flies (Rhagoletis alternata) or moths (Cydia tenebrosana), while nematodes have been implicated for growth reduction even on plantations grown under soil-less conditions. Field trials and laboratory experiments to test the possibility of controlling R. alternata larvae or pupae with entomopathogenic fungi and nematodes resulted in a lack of parasitism. On the other hand, the use of Bacillus thuringiensis subsp. kurstaki or Cydia pomonella granulovirus effectively controlled C. tenebrosana. Meloidogyne incognita infestation of roses growing on rock wool substrate was drastically reduced by Arthrobothrys oligospora or abamectin. Factors such as the method of product application or pest susceptibility to the used microbial-based products accounted for the observed differences in efficacy.

Go to article

Authors and Affiliations

Eligio Malusá
Malgorzata Tartanus
Grażyna Soika
Download PDF Download RIS Download Bibtex

Abstract

The aim of this work was to evaluate the use of the naphthalic anhydride safener on the protection of common bean cultivars BRS-Estilo (carioca) and BRS-Esplendor (black) from negative effects of herbicides. Two experiments were conducted, one for each cultivar in a complete randomized design with five replications, in a 6 × 3 factorial scheme, with six herbicide treatments: bentazon, fluazifop-P + fomesafen, bentazon + imazamox, fomesafen, cloransulam, and control without application, and three naphthalic anhydride treatments: without application, foliar application, and application via seed treatment. Visible injuries at 7, 14 and 21 days after application, photosystem II electron transport rate, and plant dry weight were evaluated. The naphthalic anhydride applied via foliar, and seed treatment reduced significantly the visible injuries in relation to the control when using the herbicides bentazon, fluazifop-P + fomesafen, bentazon + imazamox, and cloransulam. The photosystem II electron transport rate was protected by anhydride applied via foliar and seed treatment when using the herbicides bentazon, fluazifop-P + fomesafen and bentazon + + imazamox. The application of naphthalic anhydride via seed treatment protected the BRS-Estilo and BRS-Esplendor common bean cultivars, with no reductions in the plant dry weight when using the herbicides fluazifop-P + fomesafen, and fomesafen. The use of naphthalic anhydride via seed treatment and foliar application protected BRS-Estilo and BRSEsplendor common bean cultivars, from the negative effects of fluazifop-P + fomesafen and fomesafen herbicides. Thus, this practice has potential to be used in common beans.

Go to article

Authors and Affiliations

Fábio Henrique Krenchinski
Edicarlos Batista de Castro
Victor José Salomão Cesco
Diego Belapart
Danilo Morilha Rodrigues
Caio Antonio Carbonari
Edivaldo Domingues Velini
Download PDF Download RIS Download Bibtex

Abstract

Two field experiments were established at the Agricultural Experimental Station of the National Research Centre at Nubaria, Beheira Governorate, Egypt to study the herbicidal potential of the leaf extract of Eucalyptus citriodora at 5, 10, 15, 20 and 25% compared to two hand hoeing, unweeded treatments and the chemical herbicides Bentazon + Clethodium, Bentazon + Fluazifop-P-butyl and Butralin on pea plants and associated weeds. The results indicated that two hand hoeing achieved the maximum weed depression as expressed by the dry matter of total weeds. The dry matter of total weeds decreased by 95.08 to 94.77% as compared with unweeded treatment 50 and 70 days after sowing (DAS) followed by Butraline (93.93–94.65%), Bentazon + Clethodium (93.26–94.07%), Bentazon + Fluazifop--P-butyl (91.82–92.77%) and leaf extract of Eucalyptus at 25% (91.61–91.95%). Furthermore, the reduction in weed development was accompanied by enhanced pea growth and yield. The results revealed that two hand hoeing was the best treatment to increase plant height, shoot dry weight and SPAD value at 50 and 70 DAS. Also, two hand hoeing produced the maximum values of pod length and number of seeds/pod. The results also indicated that Bentazon + Clethodium treatment gave observable values [recorded 72.96% in pod yield (ton ⋅ fed.–1) over that of unweeded control] of number of pod/plant, weight of pod/plant, seed yield/fed and protein percentage. Also, the results revealed great increases in the growth of pea as well as yield due to treatment with E. citriodora dry leaf extract at 25%. [recorded 64.8% in in pod yield (ton ⋅ fed.–1) over that of unweeded control]. So, the results indicated using Bentazon + Clethodium as well as E. citriodora dry leaf extract at 25% to control weeds associated with pea plants. The authors suggested application of E. citriodora dry leaf extract at 25% in controlling weeds associated with pea plants as a safe method that avoids environmental contamination.

Go to article

Authors and Affiliations

Ibrahim Mohamed El-Metwally
Kowthar Gad El-Rokiek
Download PDF Download RIS Download Bibtex

Abstract

Pest mites of the family Tetranychidae are commonly reported in several legumes. However, reports of their occurrence in lima beans are insipient, especially in Brazil. The objective of this research was to record the occurrence of mites in lima bean plants and to describe their damage in this Fabaceae. Tetranychus neocaledonicus André and Mononychellus planki McGregor were found in lima bean plants, Phaseolus lunatus (Fabaceae or Leguminosae). The lima bean plants, when infested by these mites, initially exhibit small whitish spots in the leaflets, which with increasing population density rapidly evolve into chlorotic patches, followed by silvering, and may dry out and fall due to their overfeeding. The extent of the damage caused to lima bean plants and the adaptability of the mite to warm and dry conditions indicate that T. neocaledonicus has greater potential as a lima bean pest than M. planki in northeastern Brazil. This is the first record of these mites associated with P. lunatus.

Go to article

Authors and Affiliations

Antonio Vieira Gomes Neto
Paulo Roberto Ramalho Silva
Jayara Dayany Costa Silva
Mayara Fernandes dos Santos
José Wagner da Silva Melo
Solange Maria de França
Download PDF Download RIS Download Bibtex

Abstract

The insecticidal efficiency of Ag-loaded 4A-zeolite (ZAg) and its formulations with Rosmarinus officinalis essential oil (RO) was evaluated against Sitophilus oryzae (L.) and Rhyzopertha dominica (F.). For comparison, different rates of ZAg (0.25, 0.5, 0.75, and 1 g ⋅ kg–1 wheat) were used solely and in a combination with LC50 concentrations of RO. Mortality was assessed after 7, 14, and 21 days of insect exposure to treated wheat. The progeny production was also evaluated. The use of ZAg accomplished a complete mortality (100%) on S. oryzae and 96.67% on R. dominica as well as 100% mortality of progeny against the two insect species after the longest exposing duration (21 days), at the highest rate (1 g ⋅ kg–1). On the other hand, the complete mortalities of ZAg formulations on S. oryzae were obtained after 14 d of treatment with F1 formulation (0.605 g ⋅ kg–1 RO + 0.25 g ⋅ kg–1 ZAg) and after 7 days with the other tested formulations. In addition, the complete mortality on R. dominica was obtained only by F8 (0.059 g ⋅ kg–1 RO + 1 g ⋅ kg–1 ZAg) formulation after 14 days of treatment. Concerning the efficiency of the examined formulations on the progeny of S. oryzae, F1 (0.605 g ⋅ kg–1 RO + 0.25 g ⋅ kg–1 ZAg) and F2 (0.605 g ⋅ kg–1 RO + 0.5 g ⋅ kg–1 ZAg) formulations recorded 100% mortality. In addition, F3 (0.605 g ⋅ kg–1 RO + 0.75 g ⋅ kg–1 ZAg) and F4 (0.605 g ⋅ kg–1 RO + 1 g ⋅ kg–1 ZAg) formulations suppressed the progeny production. Furthermore, the complete mortality of R. dominica progeny was obtained with F7 (0.059 g ⋅ kg–1 RO + 0.75 g ⋅ kg–1 ZAg) and F8 (0.059 g ⋅ kg–1 RO + 1 g ⋅ kg–1 ZAg) formulations. ZAg, especially its formulations with R. officinalis oil, had potential effects against two stored-product insects. F1 and F8 formulations could be treated efficiently on S. oryzae and R. dominica, respectively.

Go to article

Authors and Affiliations

Ahmed M. El-Bakry
Hanan F. Youssef
Nahed F. Abdel-Aziz
Elham A. Sammour
Download PDF Download RIS Download Bibtex

Abstract

Tomato is an economically important vegetable crop which is attacked heavily by insect pests leading to reduction of yield and quality of the fruits. Field experiments were carried out to investigate the dissipation of methomyl (a common insecticide) used mainly on tomato fruits. LC-MS/MS coupled with the QuEChERS method were used for the determination of methomyl. The results showed that the recovery using matrix-matched standards ranged from 87.8 to 101.3%, with relative standard deviation of 2.5 to 7.5%. Kinetics equation, Log R = log R0 – 0.434 Kt, was used to calculate the rate of degradation in tomato, soil and water. Residue half-life calculated using kinetic rate ranged from 1.95 to 1.63 days in tomato and soil, respectively. From the results it was concluded that tomato fruits can be safely harvested for consumption after 15 days of application based on estimated preharvest interval (PHI). It is advisable to re-estimate the PHI regularly owing to data from the EU and Codex.

Go to article

Authors and Affiliations

Dalia El-Hefny
Ibrahim Abdallah
Rania Helmy
Hend Mahmoud
Download PDF Download RIS Download Bibtex

Abstract

Polyphenol oxidase partial gene PG-PPO was cloned and characterized from Pennisetum glaucum (pearl millet) which showed 42% identity to a PPO sequence isolated from wheat at the region of Copper B with a score of 40 and e-value of 2.8. Multiple sequence alignment results revealed similarity to polyphenol oxidase (PPO) sequences from wheat, trifolium, lettuce, apricot, tobacco, tomato, pokeweed, apple, grape and poplar especially at the Copper B region of PPO. The 395 bp pearl millet PPO sequence was AT rich (53.3%) and contained the highly conserved amino acids of histidine-rich copper binding sites similar to PPO sequences from other crops. Results also indicated that PPO in pearl millet exists in multi copy. The role of the isolated PPO gene during pearl millet-downy mildew interaction was analyzed and the results showed significantly higher and rapid accumulation of PPO mRNAs in resistant pearl millet seedlings inoculated with Sclerospora graminicola in comparison to the susceptible control, demonstrating that the PPO plays a prominent role in pearl millet defense against pathogens, particularly downy mildew pathogen.

Go to article

Authors and Affiliations

Sathyanarayana Niranjan-Raj
Senapathyhally Nagaraju Lavanya
Siddaiah Chandra Nayaka
Download PDF Download RIS Download Bibtex

Abstract

Root associated bacteria were isolated from Suaeda nudiflora and two isolates were selected for this study: rhizospheric Bacillus megaterium and endophytic Pseudomonas aeruginosa. These isolates were inoculated into maize variety Narmada Moti during its germination. TTC (2, 3, 5-triphenyl tetrazolium chloride) staining was used to confirm the association of the isolates with the maize root. The effects of these root associated bacteria were tested alone and in combinations for cell wall reinforcement and the induction of defense enzymes such as phenylalanine ammonia lyase (PAL) and β-1,3-glucanase in the presence of fungal pathogen Aspergillus niger in maize. The results indicated that the rhizospheric bacteria had a greater fight response to fungal infection than the endophhytic bacteria due to cell wall lignification as well as the rapid induction of higher concentrations of defense related enzymes.

Go to article

Authors and Affiliations

Yachana Jha
Download PDF Download RIS Download Bibtex

Abstract

Genetically modified Bt cotton (Gossypium hirsutum) leaves with typical symptoms of Alternaria early blight disease resembling that of tomato and potato were observed in the main cotton growing schemes in Sudan. Symptoms on leaves appeared as either brown 2leaf spot with gray centers or leaf blight with concentric rings. Pathogenicity tests using isolates with both symptoms showed that the isolated fungi were highly pathogenic to both G. hirsutum and G. barbadense cotton varieties. Alternaria alternata isolated from infected tomato and potato leaves with early blight symptoms was included for comparison. Microscopic examination showed that the mean length of conidia from cotton, tomato and potato isolates ranged from 26.25 to 45.45 μm, while the width ranged from 9.56 to 13.64 μm. The mean number of transverse septa among all isolates was 3.4 to 5.7 and the peak length ranged from 3.75 to 7.8 μm. Based on morphological characteristics the two isolates from cotton were identified as A. alternata. Genomic DNA was extracted directly from fungal cultures grown on potato dextrose agar (PDA) plates using a Zymo Research Quick DNA kit. A species-specific primer using the internal transcribed spacer ribosomal DNA (ITS rDNA) PCR scoring indicated the presence of A. alternata using primer pair ITS4/ITS5. Amplifications of the internal transcribed spacer region of 600 bp revealed 100% identity of the isolated fungus from cotton with A. alternata from tomato and potato. These data oblige us to reconsider the presence of A. alternata in the four main cotton growing schemes in Sudan while these symptoms have always been described for tomato and potato early blight disease.

Go to article

Authors and Affiliations

Omyma Elmahi Mohamed
Mayada Mamoun Beshir
Nafisa Elmahi Ahmed
Download PDF Download RIS Download Bibtex

Abstract

The association of phytoplasma was investigated in sand olive [Dodonaea viscosa ssp. Angustifolia (L. f.) J.G. West], cowpea [Vigna unguiclata (L.)] Wap and alfalfa (Medicago sativa L.) plants exhibiting witches broom, fasciation and little leaf symptoms, respectively. Sequence analysis of ~1.7 kb DNA fragments amplified by P1/P7 primer set confirmed the association of ‘Candidatus Phytoplasma aurantifolia’ within symptomatic alfalfa, while ‘Ca. Phytoplasma cynodontis’ was associated within cowpea and sand olive.

Go to article

Authors and Affiliations

Nawres Al-Kuwaiti
Tareq Kareem
Feryal H. Sadaq
Laith H. AL-Aadhami
Download PDF Download RIS Download Bibtex

Abstract

Potato (Solanum tuberosum L.), an important food crop in the world, is susceptible to many fungal pathogens including Alternaria solani and Fusarium oxysporum causing Fusarium wilt and early blight diseases. Mycoparasitic fungi like Trichoderma encode chitinases, cell wall degrading enzymes, with high antifungal activity against a wide range of phytopathogenic fungi. In this study, a binary vector harboring endochitinase gene of ~1,000 bp was constructed and used to transform potato nodes through Agrobacterium-mediated transformation. Out of several primary transformants, two transgenic potato lines were verified for transgene insertion and integration by Southern blot. In a pot experiment for Fusarium resistance, the transgenic potato lines didn’t show any symptoms of disease, instead they remained healthy post infection. The transgenic potato lines exhibited 1.5 fold higher mRNA expression of endochitinase at 7 days as compared to 0 day post fungus inoculation. It was evident that the mRNA expression decreased over days of inoculation but was still higher than at 0 day and remained stable upto 30 days post inoculation. Similarly, for A. solani infection assay, the mRNA expression of the endochitinase gene was 3 fold higher 7 days post inoculation compared to expression at 0 day. Although the expression decreased by1.2 fold during subsequent days post infection, it remained stable for 30 days, suggesting that protection in transgenic potato plants against fungal pathogens was achieved through an increase in endochitinase transcript.

Go to article

Authors and Affiliations

Neelam Fatima
Bushra Tabassum
Iqra Yousaf
Momina Malik
Anwar Khan
Imtiaz Ahmad Sajid
Muhammad Tariq
Nida Toufiq
Saman Riaz
Idrees Ahmad Nasir
Download PDF Download RIS Download Bibtex

Abstract

The laminar flow around two side-by-side circular cylinders was numerically investigated using a vortex-in-cell method combined with a continuous-forcing immersed boundary method. The Reynolds number (Re) of the flow was examined in the range from 40 to 200, and the distance between the cylinders varies from 1.2 D to 6 D, where D is the cylinder diameter. Simulation results show that the vortex wake is classified into eight patterns, such as single-bluff-body, meandering-motion, steady, deflected-in-one-direction, flip-flopping, anti-phase-synchronization, in-phase-synchronization, and phase-difference-synchronization, significantly depending on the Re, the cylinder distance, and the initial external disturbance effects. The anti-phase-synchronization, in-phase-synchronization, and phase-difference-synchronization vortex patterns can be switched at a low Re after a long time evolution of the flow. In particular, the single-bluff-body and flip-flopping vortex patterns excite the oscillation amplitude of the drag and lift coefficients exerted on the cylinders.
Go to article

Bibliography

[1] S. Ishigai, E. Nishikawa, K. Nishimura, and K. Cho. Experimental study on structure of gas flow in tube banks with tube axes normal to flow: Part 1, Karman vortex flow from two tubes at various spacings. Bulletin of JSME, 15(86):949–956, 1972. doi: 10.1299/jsme1958.15.949.
[2] P.W. Bearman and A.J.Wadcock. The interaction between a pair of circular cylinders normal to a stream. Journal of Fluid Mechanics, 61(3):499–511, 1973. doi: 10.1017/S0022112073000832.
[3] M.M. Zdravkovich. The effects of interference between circular cylinders in cross flow. Journal of Fluids and Structures, 1(2):239–261, 1987. doi: 10.1016/S0889-9746(87)90355-0.
[4] C.H.K. Williamson. Evolution of a single wake behind a pair of bluff bodies. Journal of Fluid Mechanics, 159:1–18, 1985. doi: 10.1017/S002211208500307X.
[5] H.J. Kim and P.A. Durbin. Investigation of the flow between a pair of circular cylinders in the flopping regime. Journal of Fluid Mechanics, 196:431–448, 1988. doi: 10.1017/S0022112088002769.
[6] K.-S. Chang and C.-J.. Song. Interactive vortex shedding from a pair of circular cylinders in a transverse arrangement. International Journal for Numerical Methods in Fluids, 11(3):317–329, 1990. doi: 10.1002/fld.1650110305.
[7] S. Kang. Characteristics of flow over two circular cylinders in a side-by-side arrangement at low Reynolds numbers. Physics of Fluids, 15(9):2486, 2003. doi: 10.1063/1.1596412.
[8] A. Slaouti and P.K. Stansby. Flow around two circular cylinders by the random-vortex method. Journal of Fluids and Structures, 6(6):641–670, 1992. doi: 10.1016/0889-9746(92)90001-J.
[9] J.R. Meneghini, F. Saltara, C.L.R. Siqueira, and J.A. Ferrari Jr. Numerical simulation of flow interference between two circular cylinders in tandem and side-by-side arrangements. Journal of Fluids and Structures, 15(2):327–350, 2001. doi: 10.1006/jfls.2000.0343.
[10] W. Jester and Y. Kallinderis. Numerical study of incompressible flow about fixed cylinder pairs. Journal of Fluids and Structures, 17(4):561–577, 2003. doi: 10.1016/S0889-9746(02)00149-4.
[11] C.K. Birdsall and D. Fuss. Clouds-in-clouds, clouds-in-cells physics for many-body plasma simulation. Journal of Computational Physics, 3(4):494–511, 1969. doi: 10.1016/0021-9991(69)90058-8.
[12] I.P. Christiansen. Numerical simulation of hydrodynamics by the method of point vortices. Journal of Computational Physics,13(3):363–379,1973. doi: 10.1016/0021-9991(73)90042-9.
[13] G.-H. Cottet and P.D. Koumoutsakos. Vortex Methods: Theory and Practice. Cambridge University Press, 2000.
[14] V.L. Nguyen, R.Z. Lavi, and T. Uchiyama. Numerical simulation of flow around two tandem cylinders by vortex in cell method combined with immersed boundary method. Advances and Applications in Fluid Mechanics, 19(4):781–804, 2016. doi: 10.17654/FM019040787.
[15] V.L. Nguyen, T. Takamure, and T. Uchiyama. Deformation of a vortex ring caused by its impingement on a sphere. Physics of Fluids, 31(10):107108, 2019. doi: 10.1063/1.5122260.
[16] V. L. Nguyen, T. Nguyen-Thoi, and V. D. Duong. Characteristics of the flow around four cylinders of various shapes. Ocean Engineering, 238:109690, 2021.
[17] J.J. Monaghan. Extrapolating B splines for interpolation. Journal of Computational Physics, 60(2):253–262, 1985. doi: 10.1016/0021-9991(85)90006-3.
[18] J.H. Walther and P. Koumoutsakos. Three-dimensional vortex methods for particle-laden flows with two-way coupling. Journal of Computational Physics, 167(1):39–71, 2001. doi: 10.1006/jcph.2000.6656.
[19] C.S. Peskin. Flow patterns around heart valves: a numerical method. Journal of Computational Physics, 10(2):252–271, 1972. doi: 10.1016/0021-9991(72)90065-4.
[20] P. Angot, C.-H. Bruneau, and P. Fabrie. A penalization method to take into account obstacles in incompressible viscous flows. Numerische Mathematik, 81:497–520, 1999. doi: 10.1007/s002110050401.
[21] E.A. Fadlun, R. Verzicco, P. Orlandi, and J. Mohd-Yusof. Combined immersed-boundary finitedifference methods for three-dimensional complex flow simulations. Journal of Computational Physics, 191(1):35–60, 2000. doi: 10.1006/jcph.2000.6484.
[22] N.K.-R. Kevlahan and J.-M. Ghidaglia. Computation of turbulent flow past an array of cylinders using a spectral method with Brinkman penalization. European Journal of Mechanics - B/Fluids, 20(3):333–350, 2001. doi: 10.1016/S0997-7546(00)01121-3.
[23] M. Coquerelle and G.-H.Cottet. Avortex level set method for the two-way coupling of an incompressible fluid with colliding rigid bodies. Journal of Computational Physics, 227(21):9121– 9137, 2008. doi: 10.1016/j.jcp.2008.03.041.
[24] F. Noca, D. Shiels, and D. Jeon. A comparison of methods for evaluating time-dependent fluid dynamic forces on bodies, using only velocity fields and their derivatives. Journal of Fluids and Structures, 13(5):551–578, 1999. doi: 10.1006/jfls.1999.0219.
[25] C. Mimeau, F. Gallizio, G.-H. Cottet, and I. Mortazavi. Vortex penalization method for bluff body flows. International Journal for Numerical Methods in Fluids, 79(2):55–83, 2015. doi: 10.1002/fld.4038.
[26] J.-I. Choi, R.C. Oberoi, J.R. Edwards, and J.A. Rosati. An immersed boundary method for complex incompressible flows. Journal of Computational Physics, 224(2):757–784, 2007. doi: 10.1016/j.jcp.2006.10.032.
[27] AB. Harichandan and A. Roy. Numerical investigation of low Reynolds number flow past two and three circular cylinders using unstructured grid CFR scheme. International Journal of Heat and Fluid Flow, 31(2):154–171, 2010. doi: 10.1016/j.ijheatfluidflow.2010.01.007.
[28] M. Braza, P. Chassaing, and H. Ha Minh. Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder. Journal of Fluid Mechanics, 165:79– 130, 1986. doi: 10.1017/S0022112086003014.
[29] K. Supradeepan and A. Roy. Characterisation and analysis of flow over two side by side cylinders for different gaps at low Reynolds number: A numerical approach. Physics of Fluids, 26(6):063602, 2014. doi: 10.1063/1.4883484.
[30] V.L. Nguyen, T. Degawa, and T. Uchiyama. Numerical simulation of annular bubble plume by vortex in cell method. International Journal of Numerical Methods for Heat and Fluid Flow, 29(3):1103–1131, 2019. doi: 10.1108/HFF-03-2018-0094.
Go to article

Authors and Affiliations

Van Luc Nguyen
1
ORCID: ORCID
Duy Knanh Ho
1

  1. Institute of Engineering and Technology, Thu Dau Mot University, Binh Duong Province, Vietnam
Download PDF Download RIS Download Bibtex

Abstract

A method of solving the inverse kinematics problem for a humanoid robot modeled as a tree-shaped manipulator is presented. Robot trajectory consists of a set of trajectories of the characteristic points (the robot’s center of mass, origins of feet and hands frames) in the discrete time domain. The description of motion in the frame associated with the supporting foot allows one to represent the robot as a composite of several serial open-loop redundant manipulators. Stability during the motion is provided by the trajectory of the robot’s center of mass which ensures that the zero moment point criterion is fulfilled. Inverse kinematics solution is performed offline using the redundancy resolution at the velocity level. The proposed method utilizes robot’s redundancy to fulfill joint position limits and to reduce gravity-related joint torques. The method have been tested in simulations and experiments on a humanoid robot Melson, and results are presented.
Go to article

Bibliography

[1] P. Gupta, V. Tirth, and R.K. Srivastava. Futuristic humanoid robots: An overview. In First International Conference on Industrial and Information Systems, pages 247–254, 2006. doi: 10.1109/ICIIS.2006.365732.
[2] S. Behnke. Humanoid robots – from fiction to reality? KI– Künstliche Intelligenz, 22(4):5–9, 2008.
[3] C.-H. Ting,W.-H Yeo, Y.-J. King, Y.-D. Chuah, J.-V Lee, and W.-B Khaw. Humanoid robot: A review of the architecture, applications and future trend. Research Journal of Applied Sciences, Engineering and Technology, 7:1178–1183, 2014. doi: 10.19026/rjaset.7.402.
[4] R. Mahum, F. Butt, K. Ayyub, S. Islam, M. Nawaz, and D. Abdullah. A review on humanoid robots. International Journal of Advanced and Applied Sciences, 4(2):83–90, 2017. doi: 10.21833/ijaas.2017.02.015.
[5] S. Saeedvand, M. Jafari, H.S. Aghdasi, and J. Baltes. A comprehensive survey on humanoid robot development. The Knowledge Engineering Review, 34:e20, 2019. doi: 10.1017/S0269888919000158.
[6] E. Krotkov, D. Hackett, L. Jackel, M. Perschbacher, J. Pippine, J. Strauss, G. Pratt, and C. Orlowski. The DARPA robotics challenge finals: Results and perspectives. Journal of Field Robotics, 34(2):229–240, 2016. doi: 10.1002/rob.21683.
[7] M. Vukobratovic and B. Borovac. Zero-Moment Point — Thirty Five Years of Its Life. International Journal of Humanoid Robotics, 01(01):157–173, 2004. doi: 10.1142/s0219843604000083.
[8] Ł. Woliński and M. Wojtyra. A novel QP-based kinematic redundancy resolution method with joint constraints satisfaction. IEEE Access, 10:41023–41037, 2022. doi: 10.1109/ACCESS.2022.3167403.
[9] B.W. Satzinger, J.I. Reid, M. Bajracharya, P. Hebert, and K. Byl. More solutions means more problems: Resolving kinematic redundancy in robot locomotion on complex terrain. In 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 4861–4867. IEEE, 2014. doi: 10.1109/iros.2014.6943253.
[10] J.J. Kuffner and S.M. LaValle. RRT-connect: An efficient approach to single-query path planning. In Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065). IEEE, 2000. doi: 10.1109/robot.2000.844730.
[11] B. Siciliano and J.J.E. Slotine. A general framework for managing multiple tasks in highly redundant robotic systems. In Fifth International Conference on Advanced Robotics 'Robots in Unstructured Environments, pages 1211–1216, vol. 2, 1991. doi: 10.1109/ICAR.1991.240390.
[12] B. Siciliano, L. Sciavicco, L.Villani, and G. Oriolo. Robotics. Modelling, Planning and Control. Springer-Verlag, Wien, 1 edition, 2009. doi: 10.1007/978-1-84628-642-1.
[13] B. Siciliano and O. Khatib, editors. Springer Handbook of Robotics. Springer Handbooks. Springer, Berlin, 2 edition, 2016. doi: 10.1007/978-3-540-30301-5.
[14] S. Chiaverini. Singularity-robust task-priority redundancy resolution for real-time kinematic control of robot manipulators. IEEE Transactions on Robotics and Automation, 13(3):398–410, 1997. doi: 10.1109/70.585902.
[15] N. Mansard, O. Khatib, and A. Kheddar. A unified approach to integrate unilateral constraints in the stack of tasks. IEEE Transactions on Robotics, 25(3):670–685, 2009. doi: 10.1109/TRO.2009.2020345.
[16] F. Flacco and A. De Luca. A reverse priority approach to multi-task control of redundant robots. In 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 2421–2427, 2014. doi: 10.1109/IROS.2014.6942891.
[17] A.A. Maciejewski and C.A. Klein. Obstacle avoidance for kinematically redundant manipulators in dynamically varying environments. The International Journal of Robotics Research, 4(3):109–117, 1985. doi: 10.1177/027836498500400308.
[18] A.S. Deo and I.D.Walker. Minimum effort inverse kinematics for redundant manipulators. IEEE Transactions on Robotics and Automation, 13(5):767–775, 1997. doi: 10.1109/70.631238.
[19] G.S. Chyan and S.G. Ponnambalam. Obstacle avoidance control of redundant robots using variants of particle swarm optimization. Robotics and Computer-Integrated Manufacturing, 28(2):147–153, 2011. doi: 10.1016/j.rcim.2011.08.001.
[20] M. Duguleana, F. Grigore Barbuceanu, A. Teirelbar, and G. Mogan. Obstacle avoidance of redundant manipulators using neural networks based reinforcement learning. Robotics and Computer-Integrated Manufacturing, 28(2):132–146, 2011. doi: 0.1016/j.rcim.2011.07.004.
[21] C. Yang, S. Amarjyoti, X. Wang, Z. Li, H. Ma, and C. Y. Su. Visual servoing control of baxter robot arms with obstacle avoidance using kinematic redundancy. In H. Liu, N. Kubota, X. Zhu, R. Dillmann, and D. Zhou, editors, Intelligent Robotics and Applications, pages 568–580. Springer International Publishing, Cham, 2015. doi: 10.1007/978-3-319-22879-2_52.
[22] T. Petric, A. Gams, N. Likar, and L. Žlajpah. Obstacle avoidance with industrial robots. In G. Carbone and F. Gomez-Bravo, editors, Motion and Operation Planning of Robotic Systems: Background and Practical Approaches, pages 113–145. Springer International Publishing, Cham, 2015. doi: 10.1007/978-3-319-14705-5_5.
[23] T. Winiarski, K. Banachowicz, and D. Seredyński. Multi-sensory feedback control in door approaching and opening. In D. Filev, J. Jabłkowski, J. Kacprzyk, M. Krawczak, I. Popchev, L. Rutkowski, V. Sgurev, E. Sotirova, P. Szynkarczyk, and S. Zadrożny, editors, Intelligent Systems’2014, pages 57–70, Cham, 2015. Springer International Publishing. doi: 10.1007/978-3-319-11310-4_6.
[24] M. Tanaka and F. Matsuno. Modeling and control of head raising snake robots by using kinematic redundancy. Journal of Intelligent & Robotic Systems, 75(1):53–69, 2013. doi: 10.1007/s10846-013-9866-y.
[25] C. Ye, S. Ma, B. Li, and Y. Wang. Head-raising motion of snake-like robots. In 2004 IEEE International Conference on Robotics and Biomimetics, pages 595–600, 2004. doi: 10.1109/ROBIO.2004.1521847.
[26] J.-A. Claret, G. Venture, and L. Basañez. Exploiting the robot kinematic redundancy for emotion conveyance to humans as a lower priority task. International Journal of Social Robotics, 9(2):277–292, 2017. doi: 10.1007/s12369-016-0387-2.
[27] K. Mikołajczyk, M. Szumowski, P. Płoński, and P. Żakieta. Solving inverse kinematics of humanoid robot using a redundant tree-shaped manipulator model. In Proceedings of the 2020 4th International Conference on Vision, Image and Signal Processing, ICVISP 2020, NewYork, NY, USA, 2020. Association for Computing Machinery. doi: 10.1145/3448823.3448885.
[28] M. Szumowski, M.S. Żurawska, and T. Zielińska. Preview control applied for humanoid robot motion generation. Archives of Control Sciences, 29(1):111–132, 2019. doi: 10.24425/acs.2019.127526.
[29] M. Szumowski, M.S. Zurawska, and T. Zielinska. Simplified method for humanoid robot gait generation. In T. Uhl, editor, Advances in Mechanism and Machine Science, pages 2269–2278. Springer International Publishing, 2019. doi: 10.1007/978-3-030-20131-9_224.
[30] T. Zielińska, L. Zimin, M. Szumowski, and W. Ge. Motion planning for a humanoid robot with task dependent constraints. In T. Uhl, editor, Advances in Mechanism and Machine Science, pages 1681–1690. Springer International Publishing, Cham, 2019. doi: 10.1007/978-3-030-20131-9_166.
[31] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, and H. Hirukawa. Biped walking pattern generation by using preview control of zero-moment point. In 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422), volume 2, pages 1620–1626. IEEE, 2003. doi: 10.1109/ROBOT.2003.1241826.
[32] S.R. Buss and J.-S. Kim. Selectively damped least squares for inverse kinematics. J ournal of Graphics Tools, 10(3):37–49, 2005. doi: 10.1080/2151237X.2005.10129202.
[33] A. Ben-Israel and T.N.E. Greville. Generalized Inverses, Theory and Applications. Springer- Verlag New York, 2 edition, 2003. doi: 10.1007/b97366.
[34] P. Falco and C. Natale. On the stability of closed-loop inverse kinematics algorithms for redundant robots. IEEE Transactions on Robotics, 27(4):780–784, 2011. doi: 10.1109/TRO.2011.2135210.
[35] A. Colomé and C. Torras. Closed-loop inverse kinematics for redundant robots: Comparative assessment and two enhancements. IEEE/ASME Transactions on Mechatronics, 20(2):944–955, 2015. doi: 10.1109/TMECH.2014.2326304.
[36] D.N. Nenchev. Redundancy resolution through local optimization: A review. Journal of Robotic Systems, 6(6):769–798, 1989. doi: 10.1002/rob.4620060607.
[37] H. Zghal, R.V. Dubey, and J.A. Euler. Efficient gradient projection optimization for manipulators with multiple degrees of redundancy. In Proceedings., IEEE International Conference on Robotics and Automation, pages 1006–1011, vol. 2, 1990. doi: 10.1109/ROBOT.1990.126123.
[38] A. Liégeois. Automatic supervisory control of the configuration and behavior of multibody mechanisms. IEEE Transactions on Systems, Man, and Cybernetics, 7(12):868–871, 1977. doi: 10.1109/TSMC.1977.4309644.
[39] D.-S. Bae and E. Haug. A recursive formulation for constrained mechanical system dynamics: Part I. Open loop systems. Mechanics of Structures and Machines, 15(3):359–382, 1987. doi: 10.1080/08905458708905124.
[40] G. Rodriguez, A. Jain, and K. Kreutz-Delgado. A spatial operator algebra for manipulator modeling and control. The International Journal of Robotics Research, 10(4):371–381, 1991. doi: 10.1177/027836499101000406.
[41] K. Yamane and L. Nakamura. O(N) forward dynamics computation of open kinematic chains based on the principle of virtual work. In Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164), volume 3, pages 2824–2831, 2001. doi: 10.1109/ROBOT.2001.933050.
[42] Ł. Woliński and P. Malczyk. Dynamic modeling and analysis of a lightweight robotic manipulator in joint space. Archive of Mechanical Engineering, 62(2):279–302, 2015. doi: 10.1515/meceng-2015-0016.
[43] M.W. Spong, S. Hutchinson, and M. Vidyasagar. Robot Modeling and Control. Wiley, 2005.
[44] B. Espiau and R. Boulic. On the Computation and Control of the Mass Center of Articulated Chains. Technical Report RR-3479, INRIA, August 1998.
[45] D.A.Winter. Biomechanics and Motor Control of Human Movement. JohnWiley & Sons, Inc., 2009. doi: 10.1002/9780470549148.
Go to article

Authors and Affiliations

Kacper Mikołajczyk
1
Maksymilian Szumowski
1
Łukasz Woliński
1
ORCID: ORCID

  1. Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

Thermally induced free vibration of sandwich beams with porous functionally graded material core embedded between two isotropic face sheets is investigated in this paper. The core, in which the porosity phase is evenly or unevenly distributed, has mechanical properties varying continuously along with the thickness according to the power-law distribution. Effects of shear deformation on the vibration behavior are taken into account based on both third-order and quasi-3D beam theories. Three typical temperature distributions, which are uniform, linear, and nonlinear temperature rises, are supposed. A mesh-free approach based on point interpolation technique and polynomial basis is utilized to solve the governing equations of motion. Examples for specific cases are given, and their results are compared with predictions available in the literature to validate the approach. Comprehensive studies are carried out to examine the effects of the beam theories, porosity distributions, porosity volume fraction, temperature rises, temperature change, span-to-height ratio, different boundary conditions, layer thickness ratio, volume fraction index on the vibration characteristics of the beam.
Go to article

Bibliography

[1] D.K. Jha, T. Kant, and R.K. Singh. A critical review of recent research on functionally graded plates. Composite Structures, 96:833–849, 2013. doi: 10.1016/j.compstruct.2012.09.001.
[2] A.S. Sayyad and Y.M. Ghugal. Modeling and analysis of functionally graded sandwich beams: a review. Mechanics of Advanced Materials and Structures, 26(21):1776–1795, 2019. doi: 10.1080/15376494.2018.1447178.
[3] A. Paul and D. Das. Non-linear thermal post-buckling analysis of FGM Timoshenko beam under non-uniform temperature rise across thickness. Engineering Science Technology, an International Journal, 19(3):1608–1625, 2016. doi: 10.1016/j.jestch.2016.05.014.
[4] A. Fallah and M.M. Aghdam. Thermo-mechanical buckling and nonlinear free vibration analysis of functionally graded beams on nonlinear elastic foundation. Composites Part B: Engineering, 43 (3):1523–1530, 2012. doi: 10.1016/j.compositesb.2011.08.041.
[5] A.I. Aria and M.I. Friswell. Computational hygro-thermal vibration and buckling analysis of functionally graded sandwich microbeams. Composites Part B: Engineering, 165:785–797, 2019. doi: 10.1016/j.compositesb.2019.02.028.
[6] S.E. Esfahani, Y. Kiani, and M.R. Eslami. Non-linear thermal stability analysis of temperature dependent FGM beams supported on non-linear hardening elastic foundations. International Journal of Mechanical Sciences, 69:10–20, 2013. doi: 10.1016/j.ijmecsci.2013.01.007.
[7] M. Lezgy-Nazargah. Fully coupled thermo-mechanical analysis of bi-directional FGM beams using NURBS isogeometric finite element approach. Aerospace Science and Technology, 45:154–164, 2015. doi: 10.1016/j.ast.2015.05.006.
[8] L.C. Trinh, T.P. Vo, H.-T. Thai, and T.-K. Nguyen. An analytical method for the vibration and buckling of functionally graded beams under mechanical and thermal loads. Composites Part B: Engineering, 100:152–163, 2016. doi: 10.1016/j.compositesb.2016.06.067.
[9] T.-K. Nguyen, B.-D. Nguyen, T.P. Vo, and H.-T. Thai. Hygro-thermal effects on vibration and thermal buckling behaviours of functionally graded beams. Composite Structures, 176:1050–1060, 2017. doi: 10.1016/j.compstruct.2017.06.036.
[10] P. Malekzadeh and S. Monajjemzadeh. Dynamic response of functionally graded beams in a thermal environment under a moving load. Mechanics of Advanced Materials and Structures, 23(3):248– 258, 2016. doi: 10.1080/15376494.2014.949930.
[11] N. Wattanasakulpong, B. Gangadhara Prusty, and D.W. Kelly. Thermal buckling and elastic vibration of third-order shear deformable functionally graded beams. International Journal of Mechanical Sciences, 53(9):734–743, 2011. doi: 10.1016/j.ijmecsci.2011.06.005.
[12] S.C. Pradhan and T. Murmu. Thermo-mechanical vibration of FGM sandwich beam under variable elastic foundations using differential quadrature method. Journal of Sound and Vibration, 321(1- 2):342–362, 2009. doi: 10.1016/j.jsv.2008.09.018.
[13] G.-L. She, F.-G. Yuan, and Y.-R. Ren. Thermal buckling and post-buckling analysis of functionally graded beams based on a general higher-order shear deformation theory. Applied Mathematical Modelling, 47:340–357, 2017. doi: 10.1016/j.apm.2017.03.014.
[14] H.-S. Shen and Z.-X. Wang. Nonlinear analysis of shear deformable FGM beams resting on elastic foundations in thermal environments. International Journal of Mechanical Sciences, 81:195–206, 2014. doi: 10.1016/j.ijmecsci.2014.02.020.
[15] T.T. Tran, N.H. Nguyen, T.V. Do, P.V. Minh, and N.D. Duc. Bending and thermal buckling of unsymmetric functionally graded sandwich beams in high-temperature environment based on a new third-order shear deformation theory. Journal of Sandwich Structures & Materials, 23(3):906–930, 2021. doi: 10.1177/1099636219849268.
[16] A.R. Setoodeh, M. Ghorbanzadeh, and P. Malekzadeh. A two-dimensional free vibration analysis of functionally graded sandwich beams under thermal environment. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 226(12):2860–2873, 2012. doi: 10.1177/0954406212440669.
[17] L. Chu, G. Dui, and Y. Zheng. Thermally induced nonlinear dynamic analysis of temperature-dependent functionally graded flexoelectric nanobeams based on nonlocal simplified strain gradient elasticity theory. European Journal of Mechanics - A/Solids, 82:103999, 2020. doi: 10.1016/j.euromechsol.2020.103999.
[18] Y. Fu, J. Wang, and Y. Mao. Nonlinear analysis of buckling, free vibration and dynamic stability for the piezoelectric functionally graded beams in thermal environment. Applied Mathematical Modelling, 36(9):4324–4340, 2012. doi: 10.1016/j.apm.2011.11.059.
[19] W.-R. Chen, C.-S. Chen, and H. Chang. Thermal buckling analysis of functionally graded Euler-Bernoulli beams with temperature-dependent properties. Journal of Applied and Computational Mechanics, 6(3):457–470, 2020. doi: 10.22055/JACM.2019.30449.1734.
[20] N. Wattanasakulpong and V. Ungbhakorn. Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities. Aerospace Science and Technology, 32(1):111–120, 2014. doi: 10.1016/j.ast.2013.12.002.
[21] N. Wattanasakulpong and A. Chaikittiratana. Flexural vibration of imperfect functionally graded beams based on Timoshenko beam theory: Chebyshev collocation method. Meccanica, 50(5):1331– 1342, 2015. doi: 10.1007/s11012-014-0094-8.
[22] D. Shahsavari, M. Shahsavari, L. Li, and B. Karami. A novel quasi-3D hyperbolic theory for free vibration of FG plates with porosities resting on Winkler/Pasternak/Kerr foundation. Aerospace Science and Technology, 72:134–149, 2018. doi: 0.1016/j.ast.2017.11.004.
[23] Z. Ibnorachid, L. Boutahar, K. EL Bikri, and R. Benamar. Buckling temperature and natural frequencies of thick porous functionally graded beams resting on elastic foundation in a thermal environment. Advances in Acoustics and Vibration, 2019:7986569, 2019. doi: 10.1155/2019/7986569.
[24] Ş.D. Akbaş. Thermal effects on the vibration of functionally graded deep beams with porosity. International Journal of Applied Mechanics, 9(5):1750076, 2017. doi: 10.1142/ S1758825117500764.
[25] H. Babaei, M.R. Eslami, and A.R. Khorshidvand. Thermal buckling and postbuckling responses of geometrically imperfect FG porous beams based on physical neutral plane. Journal of Thermal Stresses, 43(1):109–131, 2020. doi: 10.1080/01495739.2019.1660600.
[26] F. Ebrahimi and A. Jafari. A higher-order thermomechanical vibration analysis of temperature-dependent FGM beams with porosities. Journal of Engineering, 2016:9561504, 2016. doi: 10.1155/2016/9561504.
[27] Y. Liu, S. Su, H. Huang, and Y. Liang. Thermal-mechanical coupling buckling analysis of porous functionally graded sandwich beams based on physical neutral plane. Composites Part B: Engineering, 168:236–242, 2019. doi: 10.1016/j.compositesb.2018.12.063.
[28] S.S. Mirjavadi, A. Matin, N. Shafiei, S. Rabby, and B. Mohasel Afshari. Thermal buckling behavior of two-dimensional imperfect functionally graded microscale-tapered porous beam. Journal of Thermal Stresses, 40(10):1201–1214, 2017. doi: 0.1080/01495739.2017.1332962.
[29] E. Salari, S.A. Sadough Vanini, A.R. Ashoori, and A.H. Akbarzadeh. Nonlinear thermal behavior of shear deformable FG porous nanobeams with geometrical imperfection: Snap-through and postbuckling analysis. International Journal of Mechanical Sciences, 178:105615, 2020. doi: 10.1016/j.ijmecsci.2020.105615.
[30] N. Ziane, S.A. Meftah, G. Ruta, and A. Tounsi. Thermal effects on the instabilities of porous FGM box beams. Engineering Structures, 134:150–158, 2017. doi: 10.1016/j.engstruct. 2016.12.039.
[31] A.I. Aria, T. Rabczuk, and M.I. Friswell. A finite element model for the thermo-elastic analysis of functionally graded porous nanobeams. European Journal of Mechanics - A/Solids, 77:103767, 2019. doi: 10.1016/j.euromechsol.2019.04.002.
[32] G.R. Liu and Y.T. Gu. A point interpolation method for two-dimensional solids. International Journal for Numerical Methods in Engineering, 50(4):937–951, 2001. doi: 10.1002/1097-0207(20010210)50:4937::AID-NME62>3.0.CO;2-X.
[33] Y.T. Gu and G.R. Liu. A local point interpolation method for static and dynamic analysis of thin beams. Computer Methods in Applied Mechanics and Engineering, 190(42):5515–5528, 2001. doi: 10.1016/S0045-7825(01)00180-3.
[34] T.H. Chinh, T.M. Tu, D.M. Duc, and T.Q. Hung. Static flexural analysis of sandwich beam with functionally graded face sheets and porous core via point interpolation meshfree method based on polynomial basic function. Archive of Applied Mechanics, 91:933–947, 2021. doi: 10.1007/s00419-020-01797-x.
[35] J.N. Reddy and C.D. Chin. Thermomechanical analysis of functionally graded cylinders and plates. Journal of Thermal Stresses, 21(6):593–626, 1998. doi: 10.1080/01495739808956165.
[36] H.-S. Shen. Functionally Graded Materials: Nonlinear Analysis of Plates and Shells. CRC Press, 2016. doi: 10.1201/9781420092578.
[37] T.-K. Nguyen, T.P. Vo, B.-D. Nguyen, and J. Lee. An analytical solution for buckling and vibration analysis of functionally graded sandwich beams using a quasi-3D shear deformation theory. Composite Structures, 156:238–252, 2016. doi: 10.1016/j.compstruct.2015.11.074.
[38] M. Şimşek. Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories. Nuclear Engineering and Design, 240(4):697–705, 2010. doi: 10.1016/j.nucengdes.2009.12.013.
[39] J.N. Reddy. Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. 2nd ed. CRC Press, 2003.
[40] G.R. Liu. Meshfree Methods: Moving Beyond the Finite Element Method. 2nd ed. Taylor & Francis, 2009. doi: 10.1201/9781420082104.
[41] G.R. Liu, Y.T. Gu, and K.Y. Dai. Assessment and applications of point interpolation methods for computational mechanics. International Journal for Numerical Methods in Engineering, 59(10):1373– 1397, 2004. doi: 10.1002/nme.925.
[42] T.P. Vo, H.-T. Thai, T.-K. Nguyen, F. Inam, and J. Lee. A quasi-3D theory for vibration and buckling of functionally graded sandwich beams. Composite Structures, 119:1–12, 2015. doi: 10.1016/j.compstruct.2014.08.006.
Go to article

Authors and Affiliations

Tran Quang Hung
1
Tran Minh Tu
2
ORCID: ORCID
Do Minh Duc
1

  1. Faculty of Civil Engineering, The University of Da Nang - University of Science and Technology, Da Nang, Vietnam
  2. Hanoi University of Civil Engineering, Hanoi, Vietnam
Download PDF Download RIS Download Bibtex

Abstract

Thermal error always exists in a machine tool and accounts for a large part of the total error in the machine. Thermal displacement in X-axis on a CNC lathe is controlled based on a rapid heating system. Positive Temperature Coefficient (PTC) heating plates are installed on the X-axis of the machine. A control temperature system is constructed for rapid heating which further helps the thermal displacement to quickly reach stability. The system then continuously maintains stable compensation of the thermal error. The presented rapid heating technique is simpler than the compensation of machine thermal errors by interference in the numerical control system. Results show that the steady state of the thermal displacement in the X-axis can be acquired in a shorter time. In addition, almost all thermal errors in constant and varying working conditions could be significantly reduced, by above 80% and 60%, respectively, compared to those without using the rapid heating. Therefore, the proposed method has a high potential for application on the CNC lathe machine for improving its precision.
Go to article

Bibliography

[1] J. Bryan. International status of thermal error research. CIRP Annals, 39(2):645–656, 1990. doi: 10.1016/S0007-8506(07)63001-7.
[2] J. Mayr, J. Jedrzejewski, E. Uhlmann, M. Alkan Donmez, W. Knapp, F. Härtig, et al. Thermal issues in machine tools. CIRP Annals, 61(2):771–791, 2012. doi: 10.1016/j.cirp.2012.05.008.
[3] H. Wang, F. Li, Y. Cai, Y. Liu, and Y. Yang. Experimental and theoretical analysis of ball screw under thermal effect. Tribology International, 152:106503, 2020. doi: 10.1016/j.triboint.2020.106503.
[4] C. Jin, B. Wu, and Y. Hu. Heat generation modeling of ball bearing based on internal load distribution. Tribology International, 45(1):8–15, 2012. doi: 10.1016/j.triboint.2011.08.019.
[5] J. Liu, C. Ma, S. Wang, S. Wang, B. Yang, and H. Shi. Thermal boundary condition optimization of ball screw feed drive system based on response surface analysis. Mechanical Systems and Signal Processing, 121:471–495, 2019. doi: 10.1016/j.ymssp.2018.11.042.
[6] C.-H. Wu and Y.-T. Kung. Thermal analysis for the feed drive system of a CNC machine center. International Journal of Machine Tools and Manufacture, 43(15):1521–1528, 2003. doi: 10.1016/j.ijmachtools.2003.08.008.
[7] H. Shi, C. Ma, J. Yang, L. Zhao, X. Mei, and G. Gong. Investigation into effect of thermal expansion on thermally induced error of ball screw feed drive system of precision machine tools. International Journal of Machine Tools and Manufacture, 97:60–71, 2015. doi: 10.1016/j.ijmachtools.2015.07.003.
[8] W.S. Yun, S.K. Kim, and D.W. Cho. Thermal error analysis for a CNC lathe feed drive system. International Journal of Machine Tools and Manufacture, 39:1087–1101, 1999. doi: 10.1016/S0890-6955(98)00073-X.
[9] H. Shi, B. He, Y. Yue, C. Min, and X. Mei. Cooling effect and temperature regulation of oil cooling system for ball screw feed drive system of precision machine tool. Applied Thermal Engineering, 161:114150, 2019. doi: 10.1016/j.applthermaleng.2019.114150.
[10] Z.Z. Xu, X.J. Liu, H.K. Kim, J.H. Shin, and S.K. Lyu. Thermal error forecast and performance evaluation for an air-cooling ball screw system. International Journal of Machine Tools and Manufacture, 51(7-8):605–611, 2011. doi: 10.1016/j.ijmachtools.2011.04.001.
[11] S.-C. Huang. Analysis of a model to forecast thermal deformation of ball screw feed drive systems. International Journal of Machine Tools and Manufacture, 35,(8):1099–1104, 1995. doi: 10.1016/0890-6955(95)90404-A.
[12] T.-J. Li, J.-H. Yuan, Y.-M. Zhang, and C.-Y. Zhao. Time-varying reliability prediction modeling of positioning accuracy influenced by frictional heat of ball-screw systems for CNC machine tools. Precision Engineering, 64:147–156, 2020. doi: 10.1016/j.precisioneng.2020.04.002.
[13] C. Ma, J. Liu, and S. Wang. Thermal error compensation of linear axis with fixed-fixed installation. International Journal of Mechanical Sciences, 175:105531, 2020. doi: 10.1016/j.ijmecsci.2020.105531.
[14] J. Zapłata and M. Pajor. Piecewise compensation of thermal errors of a ball screw driven CNC axis. Precision Engineering, 60:160–166, 2019. doi: 10.1016/j.precisioneng.2019.07.011.
[15] W. Feng, Z. Li, Q. Gu, and J. Yang. Thermally induced positioning error modelling and compensation based on thermal characteristic analysis. International Journal of Machine Tools and Manufacture, 93:26–36, 2015. doi: 10.1016/j.ijmachtools.2015.03.006.
[16] H. Zhou, P. Hu, H. Tan, J. Chen, and G. Liu. Modelling and compensation of thermal deformation for machine tool based on the real-time data of the CNC system. Procedia Manufacturing, 26:1137–1146, 2018. doi: 10.1016/j.promfg.2018.07.150.
[17] A.A. Kendoush. An approximate solution of the convective heat transfer from an isothermal rotating cylinder. International Journal of Heat and Fluid Flow, 17(4):439–441, 1996. doi: 10.1016/0142-727X(95)00002-8.
[18] T.L. Bergman, F.P. Incropera, D.P. DeWitt, and A.S. Lavine. Fundamentals of Heat and Mass Transfer. 7th edition, John Wiley & Sons, 2011.
[19] Z. Li, K. Fan, J. Yang, and Y. Zhang. Time-varying positioning error modeling and compensation for ball screw systems based on simulation and experimental analysis. The International Journal of Advanced Manufacturing Technology, 73:773–782, 2014. doi: 10.1007/s00170-014-5865-9.
[20] J.G. Yang, Y.Q. Ren, and Z.C. Du. An application of real-time error compensation on an NC twin-spindle lathe. Journal of Materials Processing Technology, 129(1-3):474–479, 2002. doi: 10.1016/S0924-0136(02)00618-0.
Go to article

Authors and Affiliations

Van-The Than
1
ORCID: ORCID
Chi-Chang Wang
2
Thi-Thao Ngo
1
Guan-Liang Guo
2

  1. Faculty of Mechanical Engineering, Hung Yen University of Technology and Education, Khoai Chau District, Hung Yen Province, Vietnam
  2. Department of Mechanical and Computer-Adided Engineering, Feng Chia University, Taichung, Taiwan, R.O.C.
Download PDF Download RIS Download Bibtex

Abstract

Autonomous manipulation of group objects requires the gripper/robot hand to achieve high productivity without poor outcomes such as object slippage and damage. This article develops the robot hand capable of achieving effective performance in each trial of grasping the group objects. Our proposed robot hand consists of two symmetrical groups of hybrid fingers having soft pads on the grasping interfaces, which operate as a comb. The grasping ability of this robot hand was theoretically and experimentally validated by handling three groups of objects showcases: tea packs, toothbrushes, and mixing sticks.Additionally, validation resultswere compared with those of another soft robot hand having soft Pneunet fingers. In each trial, the experimental results showed that the proposed robot hand with hybrid fingers achieved more stable grasping states characterized by a higher number of grasped objects than those in the case of the soft robot hand. Also, experimental results were in good agreement with the predictions of the proposed theoretical analysis. Finally, better performances of the hybrid robot hand in handling the group object provide the bases for developing a novel-robotic application in industrial production.
Go to article

Bibliography

[1] D. Rus and M.T. Tolley. Design, fabrication and control of soft robots. Nature, 521:467–475, 2015. doi: 10.1038/nature14543.
[2] S.N. Gorb. Biological attachment devices: exploring nature’s diversity for biomimetics. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 366(1870):1557–1574, 2008. doi: 10.1098/rsta.2007.2172.
[3] S. Kim, M. Spenko, S. Trujillo, B. Heyneman, V. Mattoli, and M.R. Cutkosky. Whole body adhesion: hierarchical, directional and distributed control of adhesive forces for a climbing robot. Proceedings 2007 IEEE International Conference on Robotics and Automation (ICRA), pages 1268–1273, 2007. doi: 10.1109/ROBOT.2007.363159.
[4] E. W. Hawkes, H. Jiang, D. L. Christensen, A. K. Han, and M. R. Cutkosky. Grasping without squeezing: Design and modeling of shear-activated grippers. IEEE Transactions on Robotics, 34(2):303–316, 2018. doi: 10.1109/TRO.2017.2776312.
[5] J. Shintake, S. Rosset, B. Schubert, D. Floreano, and H. Shea. Versatile soft grippers with intrinsic electroadhesion based on multifunctional polymer actuators. Advanced Materials, 28(2):231–238, 2016. doi: 10.1002/adma.201504264.
[6] B. Mazzolai, A. Mondini, F. Tramacere, G. Riccomi, A. Sadeghi, G. Giordano, E. Del Dottore, M. Scaccia, M. Zampato, and S. Carminati. Octopus-inspired soft arm with suction cups for enhanced grasping tasks in confined environments. Advanced Intelligent Systems, 1(6):1900041, 2019. doi: 10.1002/aisy.201900041.
[7] P.V. Nguyen and V.A. Ho. Grasping interface with wet adhesion and patterned morphology: Case of thin shell. IEEE Robotics and Automation Letters, 4(2):792–799, 2019. doi: 10.1109/LRA.2019.2893401.
[8] D.N. Nguyen, N.L. Ho, T.-P. Dao, and C.N. Le. Multi-objective optimization design for a sand crab-inspired compliant microgripper. Microsystem Technologies, 25, 2019. doi: 10.1007/s00542-019-04331-4.
[9] J. Hughes, U. Culha, F. Giardina, F. Guenther, A. Rosendo, and F. Iida. Soft manipulators and grippers: A review. Frontiers in Robotics and AI, 3:69, 2016. doi: 10.3389/frobt.2016.00069.
[10] Phoung H. Le, Thien P. Do, and Du B. Le. A soft pneumatic finger with different patterned profile. International Journal of Mechanical Engineering and Robotics Research, 10(10):577– 582, 2021. doi: 10.18178/ijmerr.10.10.577-582.
[11] T.-P. Dao,N.L. Ho, T.T. Nguyen, H.G. Le, P.T. Thang, H.-T. Pham, H.-T. Do, M.-D. Tran, and T.T. Nguyen. Analysis and optimization of a micro-displacement sensor for compliant microgripper. Microsystem Technologies, 23:5375–5395, 2017. doi: 10.1007/s00542-017-3378-9.
[12] P.V. Nguyen, Q.K. Luu, Y. Takamura, and V.A. Ho. Wet adhesion of micro-patterned interfaces for stable grasping of deformable objects. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 9213–9219, 2020. doi: 10.1109/IROS45743.2020.9341095.
[13] M. Calisti, M. Giorelli, G. Levy, B. Mazzolai, B. Hochner, C. Laschi, and P. Dario. An octopus-bioinspired solution to movement and manipulation for soft robots. Bioinspiration & Biomimetics, 6(3):036002, 2011. doi: 10.1088/1748-3182/6/3/036002.
[14] K.C. Galloway, K.P. Becker, B. Phillips, J. Kirby, S. Licht, D. Tchernov, R.J. Wood, and D.F. Gruber. Soft robotic grippers for biological sampling on deep reefs. Soft Robotics, 3(1):23–33, 2016. doi: 10.1089/soro.2015.0019.
[15] 2F-85 and 2F-140 Grippers. https://robotiq.com/products/2f85-140-adaptive-robot-gripper.
[16] Forestry Cranes https://marchesigru.com/en/forestry-cranes-2.
[17] H. Hyyti, V.V. Lehtola, and A. Visala. Forestry crane posture estimation with a two-dimensional laser scanner. Journal of Field Robotics, 35(7):1025–1049, 2018. doi: 10.1002/rob.21793.
[18] K.W. Allen. Encyclopedia of Physical Science and Technology – Materials. Elsevier, 2001.
[19] P.V. Nguyen, T.H. Bui, and V.A. Ho. Towards safely grasping group objects by hybrid robot hand. 2021 4th International Conference on Robotics, Control and Automation Engineering (RCAE), pages 389–393, 2021. doi: 10.1109/RCAE53607.2021.9638841.
[20] T.-L. Le, J.-C. Chen, F.-S. Hwu, and H.-B. Nguyen. Numerical study of the migration of a silicone plug inside a capillary tube subjected to an unsteady wall temperature gradient. International Journal of Heat and Mass Transfer, 97:439–449, 2016. doi: 10.1016/j.ijheatmasstransfer.2015.11.098.
[21] P.V. Nguyen and V.A. Ho. Wet adhesion of soft curved interfaces with micro pattern. IEEE Robotics and Automation Letters, 6(3):4273–4280, 2021. doi: 10.1109/LRA.2021.3067277.
[22] J. Gao, W.D. Luedtke, D. Gourdon, M. Ruths, J.N. Israelachvili, and U. Landman. Frictional forces and amontons’ law: From the molecular to the macroscopic scale. The Journal of Physical Chemistry B, 108(11):3410–3425, 2004. doi: 10.1021/jp036362l.
[23] D. Maruthavanan, A. Seibel, and J. Schlattmann. Fluid-structure interaction modelling of a soft pneumatic actuator. Actuators, 10(7):163, 2021. doi: 10.3390/act10070163.
[24] D.X. Phu, V. Mien, P.H.T. Tu, N.P. Nguyen, and S.-B. Choi. A new optimal sliding mode controller with adjustable gains based on Bolza-Meyer criterion for vibration control. Journal of Sound and Vibration, 485:115542, 2020. doi: 10.1016/j.jsv.2020.115542.
Go to article

Authors and Affiliations

Pho Van Nguyen
1 2
ORCID: ORCID
Phi N. Nguyen
2
Tan Nguyen
2
Thanh Lanh Le
2

  1. Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, Japan
  2. Department of Technology, Dong Nai Technology University, Bien Hoa 810000, Vietnam
Download PDF Download RIS Download Bibtex

Abstract

In this project, two types of treated and untreated alumina nanoparticles with different weight percentages (wt%) of 0.5, 1 and 3% were mixed with polycarbonate matrix; then, the impact ballistic properties of the nano-composite targets made from them were investigated. Three types of projectile noses -cylindrical, hemispherical, and conical, each with the same mass of 5.88\;gr -- were used in the ballistic tests. The results highlighted that ballistic limit velocities were improved by increasing the percentage of alumina nanoparticles and the treatment process; changing the projectile's nose geometry from conical to blunt nose increases the ballistic limit velocity, and ultimately, by increasing the initial velocity of conical and hemispherical nosed projectiles, the failure mechanism of the targets changed from dishing to petalling; whereas for the cylindrical projectile, the failure mode was always plugging.
Go to article

Bibliography

[1] S. Fu, Y. Wang, and Y. Wang. Tension testing of polycarbonate at high strain rates. Polymer Testing, 28(7):724–729, 2009. doi: 10.1016/j.polymertesting.2009.06.002.
[2] Q.H. Shah and Y.A. Abkar. Effect of distance from the support on the penetration mechanism of clamped circular polycarbonate armor plates. International Journal of Impact Engineering, 35(11):1244–125, 2008. doi: 10.1016/j.ijimpeng.2007.07.012.
[3] Q.H. Shah. Impact resistance of a rectangular polycarbonate armor plate subjected to single and multiple impacts. International Journal of Impact Engineering, 36(9):1128–113, 2009. doi: 10.1016/j.ijimpeng.2008.12.005.
[4] M.R. Edwards and H. Waterfall. Mechanical and ballistic properties of polycarbonate apposite to riot shield applications. Plastic Rubber Composites, 37(1):1–6, 2008. doi: 10.1179/174328908X283177.
[5] I. Livingstone, M. Richards, and R. Clegg. Numerical and experimental investigation of ballistic performance of transparent armour systems. Lightweight Armour Systems Symposium Conference, UK, 10-12 November, 1999.
[6] S.C. Wright, N.A. Fleck, and W.J. Stronge. Ballistic impact of polycarbonate–An experimental investigation. International Journal of Impact Engineering, 13(1):1–20, 1993. doi: 10.1016/0734-743X(93) 90105-G.
[7] M. Rahman, M. Hosur, S. Zainuddin, U. Vaidya, A. Tauhid, A. Kumar, J. Trovillion, and S. Jeelani. Effects of amino-functionalized MWCNTs on ballistic impact performance of E-glass/epoxy composites using a spherical projectile. International Journal of Impact Engineering, 57:108–118, 2013. doi: 10.1016/j.ijimpeng.2013.01.011.
[8] S.G. Kulkarni, X.L. Gao, S.E. Horner, J.Q. Zheng, and N.V. David. Ballistic helmets – Their design, materials, and performance against traumatic brain injury. Composite Structures, 101:313–331, 2013. doi: 10.1016/j.compstruct.2013.02.014.
[9] W. Al-Lafi, J. Jin, and M. Song. Mechanical response of polycarbonate nanocomposites to high velocity impact. European Polymer Journal, 85:354–262, 2016. doi: 10.1016/j.eurpolymj. 2016.10.048.
[10] A. Kurzawa, D. Pyka, and K. Jamroziak. Analysis of ballistic resistance of composites with EN AW-7075 matrix reinforced with Al2O3 particles. Archive of Foundry Engineering, 20(1):73–78, 2020. doi: 10.24425/afe.2020.131286.
[11] P.H.C. Camargo, K.G. Satyanarayana, and F. Wypych. Nanocomposite: synthesis, structure, properties and new application opportunities. Materials Research, 12(1):1–39, 2009. doi: 10.1590/S1516-14392009000100002.
[12] R. Jacob, A.P. Jacob, and D.E. Mainwaring. Mechanism of the dielectric enhancement in polymer–alumina nano-particle composites. Journal of Molecular Structure, 933(1-3):77–85, 2009. doi: 10.1016/j.molstruc.2007.05.041.
[13] X. Zhang and L.C. Simon. In situ polymerization of hybrid polyethylene-alumina nanocomposites. Macromolecular Materials and Engineering, 290(6):573–583, 2005. doi: 10.1002/mame. 200500075.
[14] S. Zhao, L.S. Schadleer, R. Duncan, H. Hillborg, and T. Auletta. Mechanisms leading to improved mechanical performance in nanoscale alumina filled epoxy. Composites Science and Technology, 68(14):2965–2975, 2008. doi: 10.1016/j.compscitech.2008.01.009.
[15] S.C. Zunjarrao and R.P. Singh. Characterization of the fracture behavior of epoxy reinforced with nanometer and micrometer sized aluminum particles. Composites Science and Technology, 66(13):2296–2305, 2006. doi: 10.1016/j.compscitech.2005.12.001.
[16] S. Amirchakhmaghi, A. Alavi Nia, Gh. Azizpour, and H. Bamdadi. The effect of surface treatment of alumina nanoparticles with a silane coupling agent on the mechanical properties of polymer nanocomposites. Mechanics of Composite Materials, 51(3):347– 358, 2015. doi: 10.1007/s11029-015-9506-7.
[17] E.A. Ferriter, A. McCulloh, and W. deRosset. Techniques used to estimate limit velocity in ballistic testing with small sample size. In Proceedings of the 13th Annual U.S. Army Research Laboratory Conference, pages 72–95, USA, 2005.
[18] Bayer MateralScience AG., Polycarbonates Business Unit., (2013). www.plastics.bayer.com/Products/Makrolon/ProductList/201305212210/Makrolon- 2807.aspx.
[19] A. Chandra, L.S. Turng, P. Gopalan, R.M. Rowell, and S. Gong. Study of utilizing thin polymer surface coating on the nanoparticles for melt compounding of polycarbonate/alumina nanocomposites and their optical properties. Composites Science and Technology, 68(3-4):768–776, 2008. doi: 10.1016/j.compscitech.2007.08.027.
[20] Z. Zatorski. Diagnostics of ballistic resistance of multi-layered shields. \textit{Archive of Mechanical Engineering, 54(3):205–218, 2007. doi: 10.24425/ame.2007.131555.
[21] H. Motulsky and A. Christopoulos. Fitting Models to Biological Data Using Linear and Nonlinear Regression, a Particle Guide to Curve Fitting. GraphPad Software Inc., San Diego CA, 2003.
Go to article

Authors and Affiliations

Ali Alavi Nia
1
Saeed Amirchakhmaghi
2

  1. Department of Mechanical Engineering, Bu Ali Sina University, Hamedan, Iran
  2. Department of Mechanical Industrial and Aerospace engineering, Concordia University, Montreal, Canada
Download PDF Download RIS Download Bibtex

Abstract

The hydro-mechanical drawing combines conventional deep drawing and sheet hydroforming and is widely used in the automotive industry. In this study, we designed and fabricated an indigenous experimental set-up that is low cost, low weight and portable. This study investigated the deformation of sheet metals into hemispherical cup-shaped parts made of different materials, viz., aluminium 8011 alloys, copper C12200 and steel EN10130 alloys. The initial thickness of sheet metal was 0.4 mm, the most common thickness range used in automotive applications. The deformation behaviour in terms of dome height has been measured by varying the pressure of the fluids. Aluminium 8011 alloy sheets showed a maximum dome height of 11.46 mm at a pressure of 1.47 MPa with no rupture. Steel EN10130 sheets had a maximum dome height of 10.89 mm at a pressure of 9.31 MPa. It was concluded that the behaviours of materials are different in the hydro-mechanical drawing process than in mechanical tests. Copper C12200 sheet showed superior formability with a maximum dome height of 18.91 mm at a pressure of 7.06 MPa than other materials without fracture.
Go to article

Bibliography

[1] M.-G. Lee, Y.P. Korkolis, and J.H. Kim. Recent developments in hydroforming technology. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 229(4):572–596, 2015. doi: 10.1177/0954405414548463.
[2] C. Bell, J. Corney, N. Zuelli, and D. Savings. A state of the art review of hydroforming technology. International Journal of Material Forming, 13:789–828, 2020. doi: 10.1007/s12289-019-01507-1.
[3] F.T. Feyissa and D.R. Kumar. Enhancement of drawability of cryorolled AA5083 alloy sheets by hydroforming. Journal of Materials Research and Technology, 8(1):411–423, 2019. doi: 10.1016/j.jmrt.2018.02.012.
[4] L.H. Lang, Z.R. Wang, D.C. Kang, S.J. Yuan, S.H. Zhang, J. Danckert, and K.B. Nielsen. Hydroforming highlights: sheet hydro-forming and tube hydro-forming. Journal of Materials Processing Technology, 151(1-3):165–177, 2004. doi: 10.1016/j.jmatprotec.2004.04.032.
[5] K. Siegert, M. Häussermann, B. Lösch, and R. Rieger. Recent developments in hydroforming technology, Journal of Materials Processing Technology, 98(2):251–258, 2000. doi: 10.1016/S0924-0136 (99)00206-X.
[6] H. Hu, J.-F. Wang, K.-T. Fan, T.-Y. Chen, and S.-Y. Wang. Development of sheet hydroforming for making an automobile fuel tank. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 229(4):654–663, 2015. doi: 10.1177/0954405414554666.
[7] T. Nakagawa, K. Nakamura, and H. Amino. Various applications of hydraulic counter-pressure deep drawing. Journal of Materials Processing Technology, 71(1):160–167, 1997. doi: 10.1016/S0924- 0136(97)00163-5.
[8] H. Amino, K. Nakamura, and T. Nakagawa. Counter-pressure deep drawing and its application in the forming of automobile parts. Journal of Materials Processing Technology, 23(3):243–265, 1990. doi: 10.1016/0924-0136(90)90244-O.
[9] K. Nakamura and T. Nakagawa. Sheet metal forming with hydraulic counter pressure in Japan. CIRP Annals, 36(1):191–194, 1987. doi: 10.1016/S0007-8506(07)62583-9.
[10] S.H. Zhang, Z.R. Wang, Y. Xu, Z.T. Wang, and L.X. Zhou. Recent developments in sheet hydroforming technology. Journal of Materials Processing Technology, 151(1-3):237–241, 2004. doi: 10.1016/j.jmatprotec.2004.04.054.
[11] N. Abedrabbo, M.A. Zampaloni, and F. Pourboghrat. Wrinkling control in aluminum sheet hydroforming. International Journal of Mechanical Sciences, 47(3):333–358, 2005. doi: 10.1016/j.ijmecsci.2005.02.003.
[12] M. Koç and O.N. Cora. Introduction and state of the art of hydroforming. In: M. Koç (editor), Hydroforming for Advanced Manufacturing, pages 1–29, Elsevier, 2008. doi: 10.1533/9781845694418.1.
[13] M. Chen, X. Xiao, H. Guo, and J. Tong. Deformation behavior, microstructure and mechanical properties of pure copper subjected to tube hydro-forming. Materials Science and Engineering: A, 731 (2018) 331–343. doi: 10.1016/j.msea.2018.06.068.
[14] A.A. Emiru, D.K. Sinha, A. Kumar, and A. Yadav. Fabrication and characterization of hybrid aluminium (Al6061) metal matrix composite reinforced with SiC, B 4C and MoS 2 via stir casting. International Journal of Metalcasting, 2022. doi: 10.1007/s40962-022-00800-1.
[15] F. Hasan, R. Jaiswal, A. Kumar, and A. Yadav. Effect of TiC and graphite reinforcement on hardness and wear behaviour of copper alloy B-RG10 composites fabricated through powder metallurgy. JMST Advances, 4:1–11, 2022. doi: 10.1007/s42791-022-00043-5.
[16] K.S.A. Ali, V. Mohanavel, S.A. Vendan, M. Ravichandran, A. Yadav, M. Gucwa, and J. Winczek. Mechanical and microstructural characterization of friction stir welded SiC and B 4C reinforced aluminium alloy AA6061 metal matrix composites. Materials, 14 (11):3110, 2021. doi: 10.3390/ma14113110.
[17] L. Prasad, N. Kumar, A. Yadav, A. Kumar, V. Kumar, and J.~Winczek. In situ formation of ZrB 2 and its influence on wear and mechanical properties of ADC12 alloy mixed matrix composites. Materials, 14(9):2141, 2021. doi: 10.3390/ma14092141.
[18] S. Thiruvarudchelvan and F. Travis. An exploration of the hydraulic-pressure assisted redrawing of cups. Journal of Materials Processing Technology, 72(1):117–123, 1997. doi: 10.1016/S0924-0136 (97)00138-6.
[19] J.B. Kim, D.W. Lee, D.Y. Yang, and C.S. Park. Investigation into hydro-mechanical reverse redrawing assisted by separate radial pressure—process development and theoretical verification. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 211(6):451–462, 1997. doi: 10.1243/0954405971516419.
[20] M. Janbakhsh, M. Riahi, and F. Djavanroodi. A practical approach to analysis of hydro-mechanical deep drawing of superalloy sheet metals using finite element method. International Journal of Advanced Design and Manufacturing Technology, 6(1):1–7, 2013.
[21] E. Karajibani, R. Hashemi, and M. Sedighi. Forming limit diagram of aluminum-copper two-layer sheets: numerical simulations and experimental verifications. The International Journal of Advanced Manufacturing Technology, 90:2713–2722, 2017. doi: 10.1007/s00170-016-9585-1.
[22] S. Yaghoubi and F. Fereshteh-Saniee. An investigation on the effects of the process parameters of hydro-mechanical deep drawing on manufacturing high-quality bimetallic spherical-conical cups. The International Journal of Advanced Manufacturing Technology, 110:1805–1818, 2020. doi: 10.1007/s00170-020-05985-5.
[23] Z.P. Xing, S.B. Kang, and H.W. Kim. Softening behavior of 8011 alloy produced by accumulative roll bonding process. Scripta Materialia, 45(5):597–604, 2001. doi: 10.1016/S1359-6462(01)01069- 7.
[24] A. Hasanbaşoğlu and R. Kaçar. Resistance spot weldability of dissimilar materials (AISI 316L–DIN EN 10130-99 steels). Materials & Design, 28(6):1794–1800, 2007. doi: 10.1016/j.matdes.2006.05.013.
[25] B. Meng and M.W. Fu. Size effect on deformation behavior and ductile fracture in microforming of pure copper sheets considering free surface roughening. Materials & Design, 83:400–412, 2015. doi: 10.1016/j.matdes.2015.06.067.
[26] A.G. Olabi and A. Alaswad. Experimental and finite element investigation of formability and failures in bi-layered tube hydro-forming. Advances in Engineering Software, 42(10):815–820, 2011. doi: 10.1016/j.advengsoft.2011.05.022.
[27] M. Rahimi, P. Fojan, L. Gurevich, and A. Afshari. Aluminium Alloy 8011: Surface characteristics. Applied Mechanics and Materials, 719–720:29–37, 2015. doi: 10.4028/www.scientific.net/AMM.719-720.29.
[28] G. Pantazopoulos. Metallurgical observations on fatigue failure of a bent copper tube. Journal of Failure Analysis and Prevention, 9:270–274,2009. doi: 10.1007/s11668-009-9225-2.
[29] K.A. Annan, R.C. Nkhoma, and S. Ngomane. Resistance spot welding of a thin 0.7 mm EN10130: DC04 material onto a thicker 2.4 mm 817M40 engineering steel. Journal of Southern African Institute of Mining and Metallurgy, 121(10):1–7, 2021. doi: 10.17159/2411-9717/1597/2021.
[30] T. Maki and J. Cheng. Sheet hydroforming and other new potential forming technologies. In: IOP Conference Series: Materials Science and Engineering, 418:012117, 2018. doi: 10.1088/1757- 899X/418/1/012117.
[31] A.K. Sharma and D.K. Rout. Finite element analysis of sheet hydro-mechanical forming of circular cup. Journal of Materials Processing Technology, 209(3):1445–1453, 2009. doi: 10.1016/j.jmatprotec.2008.03.070.
Go to article

Authors and Affiliations

Binayak Nahak
1
ORCID: ORCID
Anil Kumar
2
ORCID: ORCID
Anshul Yadav
2
Jerzy Winczek
3
ORCID: ORCID

  1. Motilal Nehru National Institute of Technology Allahabad, Prayagraj – 211004, India
  2. Kamla Nehru Institute of Technology, Sultanpur – 228118, India
  3. Częstochowa University of Technology, Częstochowa, Poland

This page uses 'cookies'. Learn more