Szczegóły Szczegóły PDF BIBTEX RIS Tytuł artykułu Noise Detection for Biosignals Using an Orthogonal Wavelet Packet Tree Denoising Algorithm Tytuł czasopisma International Journal of Electronics and Telecommunications Rocznik 2016 Wolumin vol. 62 Numer No 1 Autorzy Schimmack, Manuel ; Mercorelli, Paolo Wydział PAN Nauki Techniczne Wydawca Polish Academy of Sciences Committee of Electronics and Telecommunications Data 2016 Identyfikator DOI: 10.1515/eletel-2016-0002 ; eISSN 2300-1933 (since 2013) ; ISSN 2081-8491 (until 2012) Źródło International Journal of Electronics and Telecommunications; 2016; vol. 62; No 1 Referencje Neville (2006), Wavelet denoising of coarsely quantized signals Transactions on Instrumentation and Measurement, IEEE, 55, 892. ; Unser (1996), A review of wavelets in biomedical applications of the, Proceedings IEEE, 84, 626, doi.org/10.1109/5.488704 ; Luca (1979), Physiology and mathematics of myoelectrical signals on, IEEE Transactions Biomedical Engineering, 26, 313, doi.org/10.1109/TBME.1979.326534 ; Jiang (2013), Multi - scale surface lectromyography modeling to identify changes in neuromuscular activation with myofascial pain Transactions on Neural Systems and, IEEE Rehabilitation Engineering, 21, 89. ; Kumar (2003), Wavelet analysis of surface electromyography to determine muscle fatigue Transactions on Neural Systems and, IEEE Rehabilitation Engineering, 11, 400. ; Phinyomark (2012), Feature extraction and reduction of wavelet transform coefficients for emg pattern classification and, Electronics Electrical Engineering, 122, 27. ; Shahid (2005), Application of higher order statistics techniques to EMG signals to characterize the motor unit action potential on, IEEE Transactions Biomedical Engineering, 52, 1195, doi.org/10.1109/TBME.2005.847525 ; Mercorelli (2006), Noise Level Estimation Using Haar Wavelet Packet Trees for Sensor Robust Outlier Detection Series : Lecture Note in Computer Springer - Verlag publishers, Sciences.