Details

Title

Membrane separation of carbon dioxide in the integrated gasification combined cycle systems

Journal title

Archives of Thermodynamics

Yearbook

2010

Issue

No 3 September

Authors

Keywords

IGCC ; CCS ; Membrane separation

Divisions of PAS

Nauki Techniczne

Coverage

145-164

Publisher

The Committee of Thermodynamics and Combustion of the Polish Academy of Sciences and The Institute of Fluid-Flow Machinery Polish Academy of Sciences

Date

2010

Type

Artykuły / Articles

Identifier

DOI: 10.2478/v10173-010-0020-y

Source

Archives of Thermodynamics; 2010; No 3 September; 145-164

References

Grainger D. (2008), Techno-economic evaluation of a PVAm CO<sub>2</sub>-selective membrane in an IGCC power plant with CO<sub>2</sub> capture, Fuel, 87, 14. ; Pesiri D. (2003), Thermal optimization of polybenzimidazole meniscus membranes for the separation of hydrogen, methane, a carbon dioxide, Journal of Membrane Science, 218, 11. ; Skorek-Osikowska A. (2009), Purification technologies in the integrated gasification combined cycle (IGCC) installations — review and outlook, 67. ; Ściążko M. (2009), The pronciples of operation and constructions of generators for coal gasification for IGCC systems, null. ; Marano J. (2008), Integration of gas separation membranes with IGCC identifying the right membrane for the right Job, Energy Procedia, 1, 361. ; Thambimuthu K. (1993), Gas cleaning for advanced coal-based power generation. ; IPCC: <i>IPCC Special Report on Carbon Dioxide Capture and Storage.</i> Prepared by Working Group III of the Intergovernmental Panel on Climate Change, B Metz, et al. (eds.). Cambridge University Press, Cambridge - New York 2005, 442. ; Maurstad O. (2005), An overview of coal based Integrated Gasification Combined Cycle (IGCC) Technology. ; Ratafia-Brown J. (2002), Major Environmental aspects of gasification-based power generation technologies. ; Kanniche M. (2009), Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO<sub>2</sub> capture, Applied Thermal Engineering. ; Kaldis S. (2004), Energy and capital cost analysis of CO<sub>2</sub> capture in coal IGCC processes via gas separation membranes, Fuel Processing Technology, 85, 337. ; Bodzek M. (1997), Membranes Technologies in Enviromental Protection. ; <i>Gasification World Database2007 — Current Industry Status. Robust Growth Forecast.</i> Department of Energy USA, National Energy Technology Laboratory, October. 2007. <a target="_blank" href='http://www.netl.doe.gov'>www.netl.doe.gov</a> ; Kotowicz J. (2007), The Basis of the membrane gases separation, Rynek Energii, 73, 6, 29. ; Krishnan G. (2009), Simulation of a process to capture CO<sub>2</sub> from IGCC syngas using a high temperature PBI membrane, Energy Procedia, 1, 4080. ; Rezvani S. (2009), Comparative assessment of coal fired IGCC systems with CO<sub>2</sub> capture using physical absorption, membrane reactors and chemical looping, Fuel, 88, 2463. ; <i>Carbon Capture and Storage: Meeting the Financing Challenge.</i> Presentation to: Workshop on Carbon Capture and Storage Financing Challenges and Opportunities. London, September 2008. ; Lee D. (2004), Synthesis, characterization, and gas permeation properties of a hydrogen permeable silica membrane supported on porous alumina, Journal of Membrane Science, 231, 117. ; Bednarska A.: <i>European plans for improvement of the energy efficiency.</i> Web sides of URE: <a target="_blank" href='http://www.ure.gov.pl'>www.ure.gov.pl</a> ; <i>Directive of the European Parliament and the Council 2009/29/WE of 23 April 2009 amending directive 2003/87/WE in order to improve and extend the European system of greenhouse gas emission allowances trade.</i> Official Journal of the European Union, L 140/63. ; Davidson J. (2004), Technologies for capture of carbon dioxide, null. ; Kotowicz J. (2010), The influence of membrane CO<sub>2</sub> separation on the efficiency of a coal-fired power plant, Energy, 35, 841.

Editorial Board

International Advisory Board

J. Bataille, Ecole Central de Lyon, Ecully, France

A. Bejan, Duke University, Durham, USA

W. Blasiak, Royal Institute of Technology, Stockholm, Sweden

G. P. Celata, ENEA, Rome, Italy

L.M. Cheng, Zhejiang University, Hangzhou, China

M. Colaco, Federal University of Rio de Janeiro, Brazil

J. M. Delhaye, CEA, Grenoble, France

M. Giot, Université Catholique de Louvain, Belgium

K. Hooman, University of Queensland, Australia

D. Jackson, University of Manchester, UK

D.F. Li, Kunming University of Science and Technology, Kunming, China

K. Kuwagi, Okayama University of Science, Japan

J. P. Meyer, University of Pretoria, South Africa

S. Michaelides, Texas Christian University, Fort Worth Texas, USA

M. Moran, Ohio State University, Columbus, USA

W. Muschik, Technische Universität Berlin, Germany

I. Müller, Technische Universität Berlin, Germany

H. Nakayama, Japanese Atomic Energy Agency, Japan

S. Nizetic, University of Split, Croatia

H. Orlande, Federal University of Rio de Janeiro, Brazil

M. Podowski, Rensselaer Polytechnic Institute, Troy, USA

A. Rusanov, Institute for Mechanical Engineering Problems NAS, Kharkiv, Ukraine

M. R. von Spakovsky, Virginia Polytechnic Institute and State University, Blacksburg, USA

A. Vallati, Sapienza University of Rome, Italy

H.R. Yang, Tsinghua University, Beijing, China



×