Szczegóły

Tytuł artykułu

Application of CFD technique for modelling of the thermoacoustic engine

Tytuł czasopisma

Archives of Thermodynamics

Rocznik

2011

Numer

No 3 December

Autorzy

Słowa kluczowe

thermoacoustic ; Thermoacoustic engine ; Thermoacoustic regiferator ; CFD

Wydział PAN

Nauki Techniczne

Zakres

175-190

Wydawca

The Committee of Thermodynamics and Combustion of the Polish Academy of Sciences and The Institute of Fluid-Flow Machinery Polish Academy of Sciences

Data

2011

Typ

Artykuły / Articles

Identyfikator

DOI: 10.2478/v10173-011-0021-5 ; ISSN 1231-0956 ; eISSN 2083-6023

Źródło

Archives of Thermodynamics; 2011; No 3 December; 175-190

Referencje

Lord Rayleigh (1945), The Theory of Sound, II. ; Rott N. (1969), Damped and thermally driven acoustic oscillations in wide and narrow tubes, Z. Angew. Math. Phys, 20, 230, doi.org/10.1007/BF01595562 ; Wheatley J. (1985), Understanding some simple phenomena in thermoacoustics with application to acoustical heat engines, American Journal of Physics, 53, 2, 147, doi.org/10.1119/1.14100 ; Swift G. (1988), Thermoacoustic Engines, Journal of the Acoustical Society of America, 84, 4, 1148. ; Hantschk C. (1999), Numerical simulation of self-excited thermoacoustic instabilities in a Rijke tube, Journal of Sound and Vibration, 277, 3, 511, doi.org/10.1006/jsvi.1999.2296 ; Zoontjens L.: <i>Numerical Investigations of the Performance and Effectiveness of Thermoacoustic Couples.</i> PhD thesis, The University of Adelaide, Adelaide 2008. ; Zink F. (2010), CFD simulation of thermoacoustic cooling, International Communications in Heat and Mass Transfer, 37, 226, doi.org/10.1016/j.icheatmasstransfer.2009.09.001 ; Dykas S. (2010), Numerical method for modelling of acoustic waves propagation, Archives of Acoustics, 35, 1, 35, doi.org/10.2478/v10168-010-0003-7 ; Remiorz L. (2010), Numerical modelling of the thermoacoustic phenomenon as a contribution to the model of the thermoacoustic engine, TASK Quarterly, 14, 3.

Rada naukowa

International Advisory Board

J. Bataille, Ecole Central de Lyon, Ecully, France

A. Bejan, Duke University, Durham, USA

W. Blasiak, Royal Institute of Technology, Stockholm, Sweden

G. P. Celata, ENEA, Rome, Italy

L.M. Cheng, Zhejiang University, Hangzhou, China

M. Colaco, Federal University of Rio de Janeiro, Brazil

J. M. Delhaye, CEA, Grenoble, France

M. Giot, Université Catholique de Louvain, Belgium

K. Hooman, University of Queensland, Australia

D. Jackson, University of Manchester, UK

D.F. Li, Kunming University of Science and Technology, Kunming, China

K. Kuwagi, Okayama University of Science, Japan

J. P. Meyer, University of Pretoria, South Africa

S. Michaelides, Texas Christian University, Fort Worth Texas, USA

M. Moran, Ohio State University, Columbus, USA

W. Muschik, Technische Universität Berlin, Germany

I. Müller, Technische Universität Berlin, Germany

H. Nakayama, Japanese Atomic Energy Agency, Japan

S. Nizetic, University of Split, Croatia

H. Orlande, Federal University of Rio de Janeiro, Brazil

M. Podowski, Rensselaer Polytechnic Institute, Troy, USA

A. Rusanov, Institute for Mechanical Engineering Problems NAS, Kharkiv, Ukraine

M. R. von Spakovsky, Virginia Polytechnic Institute and State University, Blacksburg, USA

A. Vallati, Sapienza University of Rome, Italy

H.R. Yang, Tsinghua University, Beijing, China



×