Details

Title

Coordination number for random distribution of parallel fibres

Journal title

Archives of Thermodynamics

Yearbook

2017

Issue

No 1

Authors

Keywords

coordination number ; random sequential addition ; parallel fibres ; fibre-reinforced composite

Divisions of PAS

Nauki Techniczne

Coverage

3-26

Publisher

The Committee of Thermodynamics and Combustion of the Polish Academy of Sciences and The Institute of Fluid-Flow Machinery Polish Academy of Sciences

Date

2017

Type

Artykuły / Articles

Identifier

DOI: 10.1515/aoter-2017-0001

Source

Archives of Thermodynamics; 2017; No 1; 3-26

References

Ueda (2012), Micro structures of granular materials with various grain size distributions, Powder Technol, 217. ; Huerta (2003), Role of rigidity in the fluid - solid transition, Phys Rev Lett, 90. ; Jouannot (2006), Practical determination of the coordination number in granular media, Image Anal Stereol, 25, 55. ; Smith (1988), Computer simulation results for the two - point probability function of composite media, Comput Phys, 76. ; Guo (2006), Theoretical direct correlation function for two - dimensional fluids of monodisperse hard spheres, Chem Phys, 14, 125. ; Cadilhe (2007), Random sequential adsorption : From continuum to lattice and pre - patterned substrates, Phys Cond Mat, 19, 065124. ; Furmański (2014), Micro - macro model for prediction of local temperature distribution in heterogenous and two - phase media, Arch Thermodyn, 35. ; Suzuki (1983), Estimation of the co - ordination number in a multicomponent mixture of spheres, Powder Technol, 35. ; Boublik (2012), Structure of two - dimensional hard disk systems Simple geometric method Fluid Phase, Equilibr, 316. ; Furmański (1997), Heat Conduction in Composites : Homogenization and Macroscopic Behavior, Appl Mech Rev, 6, 50. ; Crawford (2003), Aspects of correlation function realizability, Chem Phys, 119. ; Vahvaselka (1988), X - ray diffraction study of liquid sulfur, Phys Scripta, 5, 38. ; Tassopoulos (1992), Microstructural descriptors characterizing granular deposits, AIChEJ, 38. ; Zarichnyak (1980), Generalization of data on the dependence of the coordination number on the porosity in the fillings of sintered or pressed granular materials Fizicheskii in Russian, Inzhenerno, 39, 862. ; Meyer (2010), Jamming in two - dimensional packings, Physica A, 22, 389. ; Danwanichakul (2005), Continutiy between disorder and order in the sequential deposition of particles, Chem Eng Commun, 11, 192. ; Torquato (2002), Random Heterogeneous Materials - Microstructure and Macroscopic Proporties Verlag, Springer. ; Muller (1994), Glossary of terms used in physical organic chemistry Pure, Appl Chem, 5, 66. ; Hopkins (2009), Dense sphere packings from optimized correlation functions, Phys Rev E, 79. ; Chae (1969), Radial distribution functions and equation of state of the hard - disk fluid, Chem Phys, 50. ; Torquato (2006), Random sequential addition of hard spheres in high euclidean dimensions, Phys Rev E, 6, 74. ; Antwerpen (2010), A review of correlations to model the packing structure and effective thermal conductivity in packed beds of mono - sized spherical particles Nuclear, Eng Design, 7, 240. ; Uche (2006), On the realizability of pair correlation functions, Physica A, 360. ; Largo (2002), Theory and computer simulation of the coordination number of square - well fluids of variable width Fluid Phase, Equilibr, 193. ; Nayak (1978), A statistical thermodynamic theory for coordination - number distribution and effective thermal conductivity of random packed beds Heat Mass Trans, Int J, 21, 669.

Editorial Board

International Advisory Board

J. Bataille, Ecole Central de Lyon, Ecully, France

A. Bejan, Duke University, Durham, USA

W. Blasiak, Royal Institute of Technology, Stockholm, Sweden

G. P. Celata, ENEA, Rome, Italy

L.M. Cheng, Zhejiang University, Hangzhou, China

M. Colaco, Federal University of Rio de Janeiro, Brazil

J. M. Delhaye, CEA, Grenoble, France

M. Giot, Université Catholique de Louvain, Belgium

K. Hooman, University of Queensland, Australia

D. Jackson, University of Manchester, UK

D.F. Li, Kunming University of Science and Technology, Kunming, China

K. Kuwagi, Okayama University of Science, Japan

J. P. Meyer, University of Pretoria, South Africa

S. Michaelides, Texas Christian University, Fort Worth Texas, USA

M. Moran, Ohio State University, Columbus, USA

W. Muschik, Technische Universität Berlin, Germany

I. Müller, Technische Universität Berlin, Germany

H. Nakayama, Japanese Atomic Energy Agency, Japan

A. Nenarokomov, Moscow Aviation Institute, Russia

S. Nizetic, University of Split, Croatia

H. Orlande, Federal University of Rio de Janeiro, Brazil

M. Podowski, Rensselaer Polytechnic Institute, Troy, USA

A. Rusanov, Institute for Mechanical Engineering Problems NAS, Kharkiv, Ukraine

M. R. von Spakovsky, Virginia Polytechnic Institute and State University, Blacksburg, USA

A. Vallati, Sapienza University of Rome, Italy

H.R. Yang, Tsinghua University, Beijing, China



×