Details

Title

Droplet impact in icing conditions – experimental study for WE 540

Journal title

Archive of Mechanical Engineering

Yearbook

2017

Volume

vol. 64

Issue

No 2

Affiliation

Lizer, Tomasz : Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology, Poland. ; Remer, Michał : Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology, Poland. ; Sobieraj, Grzegorz : Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology, Poland. ; Psarski, Maciej : Faculty of Chemistry, Department of Materials Technology and Chemistry, University of Lodz, Poland. ; Pawlak, Daniel : Faculty of Chemistry, Department of Materials Technology and Chemistry, University of Lodz, Poland. ; Celichowski, Grzegorz : Faculty of Chemistry, Department of Materials Technology and Chemistry, University of Lodz, Poland.

Authors

Keywords

droplets ; icing ; wetting ; hydrophobicity ; experimental techniques

Divisions of PAS

Nauki Techniczne

Coverage

165-175

Publisher

Polish Academy of Sciences, Committee on Machine Building

Bibliography

[1] A. Alizadeh,V. Bahadur, S. Zhong,W. Shang, R. Li, J. Ruud, M.Yamada, L. Ge, A. Dhinojwala, and M. Sohal. Temperature dependent droplet impact dynamics on flat and textured surfaces. Applied Physics Letters, 100(11):111601, 2012. doi: 10.1063/1.3692598.
[2] M. Nosonovsky and V. Hejazi. Why superhydrophobic surfaces are not always icephobic. ACS Nano, 6(10):8488–8491, 2012. doi: 10.1021/nn302138r.
[3] K.K. Varanasi, T. Deng, M. Hsu, and N. Bhate. Hierarchical superhydrophobic surfaces resist water droplet impact. In Technical Proceedings of the 2009 NSTI Nanotechnology Conference and Expo, Houston, Texas, USA, 3-7 May 2009. Nano Science and Technology Institute. http://hdl.handle.net/1721.1/64767.
[4] L. Mishchenko, B. Hatton, V. Bahadur, J.A. Taylor, T. Krupenkin, and J. Aizenberg. Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets. ACS Nano, 4(12):7699–7707, 2010. doi: 10.1021/nn102557p.
[5] R. Ramachandran, K. Sobolev, and M. Nosonovsky. Dynamics of droplet impact on hydrophobic/icephobic concrete with the potential for superhydrophobicity. Langmuir, 31(4):1437–1444, 2015. doi: 10.1021/la504626f.
[6] T. Bobinski, G. Sobieraj, K. Gumowski, J. Rokicki, M. Psarski, J. Marczak, and G. Celichowski. Droplet impact in icing conditions – the influence of ambient air humidity. Archives of Mechanics, 66(2):127–142, 2014. http://am.ippt.pan.pl/index.php/am/article/view/v66p127.
[7] R. Rioboo, M. Marengo, and C. Tropea. Time evolution of liquid drop impact onto solid, dry surfaces. Experiments in Fluids, 33(1):112–124, 2002. doi: 10.1007/s00348-002-0431-x.
[8] N. Laan, K.G. de Bruin, D. Bartolo, C. Josserand, and D. Bonn. Maximum diameter of impacting liquid droplets. Physical Review Applied, 2(4):044018, 2014. doi: 10.1103/PhysRevApplied.2.044018.
[9] B.B.J. Stapelbroek, H.P. Jansen, E.S. Kooij, J.H. Snoeijer, and A. Eddi. Universal spreading of water drops on complex surfaces. Soft Matter, 10(15):2641–2648, 2014. doi: 10.1039/c3sm52464g.
[10] M. Remer, M. Psarski, K. Gumowski, J. Rokicki, G. Sobieraj, M. Kaliush, D. Pawlak, and G. Celichowski. Dynamic water contact angle during initial phases of droplet impingement. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 508:57–69, 2016. doi: 10.1016/j.colsurfa.2016.08.028.
[11] C.T. Crowe. Multiphase Flow Handbook, volume 59 of Mechanical and Aerospace Engineering Series. CRC Press, 2005.
[12] C. Stanley, R. Jackson, N. Karwa, and G. Rosengarten. The effects of surface wettability on droplet fingering. In The Proceedings of the 19th Australasian Fluid Mechanics Conference, Melbourne, Australia, 8-11 December 2014. Paper No. 49.
[13] A. Latka, A. Strandburg-Peshkin, M.M. Driscoll, C.S. Stevens, and S.R. Nagel. Creation of prompt and thin-sheet splashing by varying surface roughness or increasing air pressure. Physical Review Letters, 109(5):054501, 2012. doi: 10.1103/PhysRevLett.109.054501.
[14] T.G. Myers, J.P.F. Charpin, and C.P. Thompson. Slowly accreting ice due to supercooled water impacting on a cold surface. Physics of Fluids, 14(1):240–256, 2002. doi: 10.1063/1.1416186.

Date

2017

Type

Artykuły / Articles

Identifier

DOI: 10.1515/meceng-2017-0010 ; ISSN 0004-0738, e-ISSN 2300-1895

Source

Archive of Mechanical Engineering; 2017; vol. 64; No 2; 165-175
×