Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 577
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Open pit mining of rock minerals and the affected areas requiring further development are a serious challenge for shaping the positive image of the mining industry among the public. The direction and method of post-mining land reclamation are important for this image, which should take into account various factors describing the mining area, including social preferences. The article presents an example solution – fuzzy system (FSDR) – which supports the selection of the direction of reclamation of post-mining areas created after the termination of operations of open pit gravel and sand natural aggregate mines. The article presents selected factors determining the selection of the direction and possible reclamation variants as input and output data of the fuzzy system. The rules base of the developed system, as well as the mechanisms of inference and defuzzification, were also characterized. The application of the developed system is presented on selected examples.

Go to article

Authors and Affiliations

Jadwiga Król-Korczak
Edyta Brzychczy
Download PDF Download RIS Download Bibtex

Abstract

In Poland, the economic use of methane from coal seams has been recognized as one of the objectives of the „Energy Policy of Poland until 2030“. In Poland at the Upper Silesian Coal Basin, reconnaissance operations were initiated to collect methane from coal seams using drilling wells and hydraulic fracturing operations.

During these operations, noise emission can have a significant impact on the environment. In order to limit the negative impact of noise, well pads are usually located in undeveloped areas. However, in the European Union, the majority of hard coal deposits from which methane can be extracted are located in areas with a high population density.

This article presents the results of noise measurements carried out during hydraulic fracturing operations of coal seams and the results of calculations of the equivalent sound level during the daytime. Based on the analysis of noise emission, some recommendations are given regarding the location of planned new well pads in highly urbanized areas in order to meet the applicable standards of noise protection.

Go to article

Authors and Affiliations

Jakub Siemek
Download PDF Download RIS Download Bibtex

Abstract

Dynamic Mine disasters can be induced by the instability and failure of a composite structure of rock and coal layers during coal mining. Coal seam contains many native defects, severely affecting the instability and failure of the compound structure. In this study, the effects of coal persistent joint on the strength and failure characteristics of coal-rock composite samples were evaluated using PFC2D software. The results show that with the increase of included angle α between the loading direction and joint plane direction, the uniaxial compressive stress (UCS) and peak strain of composite samples first decrease and then gradually increase. The elastic moduli of composite samples do not change obviously with α. The peak strain at α of 45° is the lowest, and the UCS at α of 30° is the smallest. This is inconsistent with theoretical analysis of lowest UCS at α of 45°. This is because that the local stress concentration caused by the motion inconformity of composite samples may increase the average axial stress of upper wall in PFC2D software. Moreover, the coal persistent joint promotes the transformation from the unstable crack expansion to the macro-instability of composite samples, especially at α of 30° and 45°. The majority of failures for composite samples occur within the coal, and no obvious damage is observed in rock. Their failure modes are shear failure crossing or along the coal persistent joint. The failure of composite sample at α of 30° is a mixed failure, including the shear failure along the persistent joint in coal and tensile failure of rock induced by the propagation of coal persistent joint.

Go to article

Authors and Affiliations

Dawei Yin
Shaojie Chen
Bing Chen
Zhiguo Xia
Download PDF Download RIS Download Bibtex

Abstract

Increasing environmental pressure against waste disposal, particularly fine waste surface storage and concern about mining damages have resulted in an increase in the popularity of a fly ash, tailing and binding agent mixture used as compaction grout of roof fall rocks in a gob area of longwalls. Backfilling of voids forming as a result of exploitation with the fall of roof with mixtures containing fine-grained industrial wastes is a common practice in coal mines. It is aimed at achieving numerous technological and ecological advantages as well as at controlling mining hazards. Research on hydraulic transport of fine-grained slurry conducted to date focused mainly on issues related to the analysis of the conditions related to pipeline transportation. The processes concerning the propagation of mixtures within the gob, on the other hand, remain largely unknown. The process of flow of fine-grained slurry through the caving is subject to a series of factors related, among other things, with the properties of the applied wastes and mixtures, the characteristics of the gob as well as the variability of these properties during the flow through the gob and in time. Due to the lack of sufficient knowledge pertaining to the changes taking place in the gob and in the slurry while it penetrates the gobs, no methods allowing for the design and optimization of the gob grouting process have been established so far. The paper presents the selected results of laboratory tests regarding the flow of ash and water mixtures in a model of a gob, pertaining to two selected types of fly ash produced in hard coal combustion, particularly concerning the impact of the type of the ash and the density of the slurry on the effectiveness of the gob grouting process.

Go to article

Authors and Affiliations

Marcin Krzysztof Popczyk
Rafał Jendruś
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a simulation analysis of four control systems of the raw coal feed to a jig: stabilization of the volumetric flow of the feed, stabilization of the feed tonnage, stabilization of the feed flow with the additional measurement of the feed bulk density or the additional measurement of ash content in the feed. Analysis has been performed for the first and second compartments of a jig. The aim of the feed control was to stabilize the mass of the bed in the zone where the material stratifies; the mass may change due to changes in the washability characteristics of the feed. Such control should result in stable conditions in which material loosens during subsequent media pulsation cycles; stabilizing conditions minimizes the dispersion of coal particles in the bed. The best results have been achieved for the system of feed control where the ash content was measured in the first compartment, and for feed tonnage control in the second compartment.

Go to article

Authors and Affiliations

Stanisław Cierpisz
Jarosław Joostberens
Download PDF Download RIS Download Bibtex

Abstract

With the rise of coal mine underground reservoir engineering in the Shendong Mining Area, the space time dynamic evolution prediction of storage coefficient is becoming one of the critical technical problems for long-term reservoir operation. This coefficient directly determines the storage capacity and the comprehensive benefits of the operation of a coal mine underground reservoir. To this end, the proposed underground reservoir in Daliuta coal mine (No. 22616 working face) is selected in this study for the development and application of an experimental device to measure the storage coefficient. Rock and coal fragments from similar materials are prepared, which are filled and loaded according to the caving rock nature as well as the lumpiness and accumulation mode characteristics pertaining to No. 22616 working face. Subsequently, the measured storage coefficient under circulating water injection conditions revealed a four-dimensional spatial and temporal pattern. It followed the law of storage coefficient under joint interaction of water-rock and stress. The results showed that, prior to the experiment, rock and coal fragments made from similar materials had good water resistance when the paraffin content was set at 8%. The three stress zones were defined based on a theoretical analysis, which were applied on the corresponding loads. During the experiments, significant regional differences were found in the top surface with persisting subsidence of each stress loading zone. Hence, compared with its initial state, the maximum subsidence in the stress stability zone, the stress recovery zone, and the low-stress zone was 7.89, 5.8, and 1.83 mm, respectively. While the storage capacity and the storage coefficient gradually decreased, the former ranged from 0.2429 to 0.2397 m3, and the latter ranged from 0.270 to 0.266. The experimental results are verified by drainage engineering tests in the Shendong Mining Area. In essence, the storage coefficient had remarkable spatial distribution characteristics and a time-varying effect. In space, the storage coefficient increased with height along the vertical direction of the coal mine underground reservoir. However, it decreased with the distance from the boundary of the dam body in the horizontal direction. With time, the storage coefficient decreased dynamically. This study provides a new way of predicting the storage coefficient of a coal mine underground reservoir.

Go to article

Authors and Affiliations

Bei-Fang Wang
Ke-Ming Sun
Bing Liang
Wei-Ji Sun
Download PDF Download RIS Download Bibtex

Abstract

Time-dependent behavior of rock mass is important for long-term stability analysis in rock engineering. Extensive studies have been carried out on the creep properties and rheological models for variable kinds of rocks, however, the effects of initial damage state on the time-dependent behavior of rock has not yet been taken into consideration. In the present study, the authors proposed a creep test scheme with controlled initial damage to investigate the influence of initial damage on the time-dependent behavior of sandstone. In the test scheme, the initial states of damage were first determined via unloading the specimen from various stresses. Then, the creep test was conducted under different stress levels with specific initial damage. The experimental results show that there is a stress threshold for the initial damage to influence the behavior of the rock in the uniaxial compressive creep tests, which is the stress threshold of dilatancy of rock. When the creep stress is less than the stress threshold, the effect of the initial damage seems to be insignificant. However, if the creep stress is higher than the stress threshold, the initial damage has an important influence on the time-dependent deformation, especially the lateral and volumetric deformation. Moreover, the initial damage also has great influence on the creep failure stress and long-term strength, i.e., higher initial damage leading to lower creep failure stress and long-term strength. The experimental results can provide valuable data for the construction of a creep damage model and long-term stability analysis for rock engineering.

Go to article

Authors and Affiliations

Rongbin Hou
Kai Zhang
Jing Tao
Download PDF Download RIS Download Bibtex

Abstract

CO2 emission from combustion fossil fuels is considered as the primary factor in the global warming. Different methods for separation CO2 from combustion flue gases are extensively used across the world. The aim of this study is to analyze the most important technological solutions of CO2 separation. For this reason chemical absorption, physical absorption, adsorption approach, membrane filtration and cryogenic process were researched. Concluding, selection of the right method for carbon dioxide capture separation is a complex issue and a range of technological and economic factors should be taken into consideration prior to application on the industrial scale.

Go to article

Authors and Affiliations

Robert Czarnota
Ewa Knapik
Paweł Wojnarowski
Damian Janiga
Jerzy Stopa
Download PDF Download RIS Download Bibtex

Abstract

This study shows the results of flotation concentration of mica minerals from kaolinised granite taken from the “Bašića bare” deposit – Kobaš, Srbac, The Republic of Srpska (B&H). Mineralogical composition of kaolinised granite is as follows: kaolinite, feldspar, quartz, and mica. After separating >0.630 mm, and <0.043 mm size class where kaolinite is concentrated, the rest is –0.630+0.043 mm class containing quartz, feldspar and mica. The mica concentrate was obtained by the flotation concentration, while feldspar and quartz were in the flotation underflow. According to the mineralogical analysis, the most abundant minerals are mica and chlorite/clays, while quartz and feldspar occur much less, and accessory minerals are represented in trace. The semi-quantitative mineralogical analysis obtained by the X-ray powder diffraction (XRPD) method of the mica concentrate amount to: mica ≈55%, chlorite/clays ≈35%, quartz ≈5%, feldspars (plagioclase and K-feldspars combined) ≈5%.

Go to article

Authors and Affiliations

Živko T. Sekulić
Slavica R. Mihajlović
Jovica N. Stojanović
Branislav B. Ivošević
Vladan D. Kašić
Miroslav R. Ignjatović
Download PDF Download RIS Download Bibtex

Abstract

A lithological profile and measurements of the orientation and spacings of natural discontinuity planes were carried out in the Górka-Mucharz sandstone excavation (Krosno Beds, Outer Carpathians, Poland). In addition, the density of the discontinuities was assessed by measuring their spacings using oriented digital photographs of the quarry walls. An orthophotomap was also used in assessing the orientation and density of fractures with the tools available in QGIS. It was shown that digital image analysis can be used as an alternative to direct field measurements, especially in situations where access to an outcrop is difficult. The distributions of spacings larger than 40 cm, obtained by direct measurements and based on digital images of the quarry, were comparable. As a consequence, both measurement techniques yielded similar values of the quantity of blocks (QB), which differed by less than 2% for the minimum block volume in the range 0.4-1.0 m3 and by 6-7% for larger blocks. On the other hand, measurements of discontinuity spacings that were taken on the basis of an orthophotomap can only serve to estimate the approximate maximum value of this parameter. However, the use of orthophotomaps gives a more explicit spatial pattern of the main vertical joint sets than direct measurements in the quarry.

The analysis results also showed the following: (i) the presence of tectonic disturbances visible at the highest level of the deposit; (ii) higher density of set A fractures with planes deepening in the NE direction and a considerable reduction of the QB parameter, particularly in the peripheral NE and SW parts of the deposit; (iii) differences in the orientation of the discontinuity system between particular beds. The variable density of the discontinuities in the excavation is related to the presence of the faults that limit the Górka-Mucharz deposit.

Go to article

Authors and Affiliations

Beata Figarska-Warchoł
ORCID: ORCID
Grażyna Stańczak
Download PDF Download RIS Download Bibtex

Abstract

The draw theory is the foundation for decreasing ore loss and dilution indices while extracting deposits from mines. Therefore, research on draw theory is of great significance to optimally guide the draw control and improve the economy efficiency of mines. The laboratory scaled physical draw experiments under inclined wall condition conducted showed that a new way was proposed to investigate the flow zone of granular materials. The flow zone was simply divided into two parts with respect to the demarcation point of the flow axis. Based on the stochastic medium draw theory, theoretical movement formulas were derived to define the gravity flow of fragmented rocks in these two parts. The ore body with 55° dip and 10 m width was taken as an example, the particle flow parameters were fitted, and the corresponding theoretical shape of the draw body was sketched based on the derived equation of draw-body shape. The comparison of experimental and theoretical shapes of the draw body confirmed that they coincided with each other; hence, the reliability of the derived equation of particle motion was validated.

Go to article

Authors and Affiliations

Xiufeng Zhang
Ganqiang Tao
Zhonghua Zhu
Download PDF Download RIS Download Bibtex

Abstract

The role of the hard coal mining sector in ensuring energy security of the country has been presented in the paper. An analysis of its current status was made based on the results obtained by the sector in 2017. Moreover, the determinants which are the precondition for further sustainable and efficient operation in the years to come have been defined.

Go to article

Authors and Affiliations

Antoni Tajduś
ORCID: ORCID
Marian Turek
Download PDF Download RIS Download Bibtex

Abstract

Entries in steeply pitching seams have a more complex stress environment than those in flat seams. This study targets techniques for maintaining the surrounding rock mass stability of entries in steep seams through a case study of a steep-seam entry at a mine in southern China. An in-depth study of the deformation and instability mechanisms of the entry is conducted, employing field measurement, physical simulation experiment, numerical simulation, and theoretical analysis. The study results show that the surrounding rock mass of the entry is characterised by asymmetrical stress distribution, deformation, and failure. Specifically, 1) the entry deformation is characterised by a pattern of floor heaving and roof subsidence; 2) broken rock zones in the two entry walls are larger than those in the roof and floor, and the broken rock zone in the seam-floor side wall is larger than that in the seam-roof side wall; 3) rock bolts in the middle-bottom part of the seam-floor side wall of the entry are prone to failure due to tensile stress; and 4) rock bolts in the seam-roof side wall experience relatively even load and relatively small tensile stress. Through analysis, disturbances were found to occur in both temporal and spatial dimensions. Specifically, in the initial mining stage, the asymmetrical rock structure and stress distribution cause entry deformation and instability; during multiple-seam multiple-panel mining operations, a wedge-shaped rock mass and a quasi-arc cut rock stratum formed in the mining space may cause subsidence in the seam-floor side wall of the entry and inter-stratum transpression, deformation, and instability of the entry roof and floor. The principles for controlling the stability of the surrounding rock mass of the entry are proposed. In addition, an improved asymmetrical coupled support structure design for the entry is proposed to demonstrate the effective control of entry deformation.

Go to article

Authors and Affiliations

Panshi Xie
Yongping Wu
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

In the extra-thick coal seams and multi-layered hard roofs, the longwall hydraulic support yielding, coal face spalling, strong deformations of goaf-side entry, and severe ground pressure dynamic events typically occur at the longwall top coal caving longwall faces. Based on the Key strata theory an overburden caving model is proposed here to predict the multilayered hard strata behaviour. The proposed model together with the measured stress changes in coal seam and underground observations in Tongxin coal mine provides a new idea to analyse stress changes in coal and help to minimise rock bursts in the multi-layered hard rock ground. Using the proposed primary Key and the sub-Key strata units the model predicts the formation and instability of the overlying strata that leads to abrupt dynamic changes to the surrounding rock stress. The data obtained from the vertical stress monitoring in the 38 m wide coal pillar located adjacent to the longwall face indicates that the Key strata layers have a significant influence on ground behaviour. Sudden dynamically driven unloading of strata was caused by the first caving of the sub-Key strata while reloading of the vertical stress occurred when the goaf overhang of the sub-Key strata failed. Based on this findings several measures were recommended to minimise the undesirable dynamic occurrences including pre-split of the hard Key strata by blasting and using the energy consumption yielding reinforcement to support the damage prone gate road areas. Use of the numerical modelling simulations was suggested to improve the key theory accuracy.

Go to article

Authors and Affiliations

Zhijie Zhu
Yunlong Wu
Jun Han
Ying Chen
Download PDF Download RIS Download Bibtex

Abstract

The major downside of blasting works is blast vibrations. Extensive research has been done on the subject and many predictors, estimating Peak Particle Velocity (PPV), were published till date. However, they are either site specific or global (unified model regardless of geology) and can give more of a guideline than exact data to use. Moreover, the model itself among other factors highly depends on positioning of vibration monitoring instruments. When fitting of experimental data with best fit curve and 95% confidence line, the equation is valid only for the scaled distance (SD) range used for fitting. Extrapolation outside of this range gives erroneous results. Therefore, using the specific prediction model, to predetermine optimal positioning of vibration monitoring instruments has been verified to be crucial. The results show that vibration monitoring instruments positioned at a predetermined distance from the source of the blast give more reliable data for further calculations than those positioned outside of a calculated range. This paper gives recommendation for vibration monitoring instruments positioning during test blast on any new site, to optimize charge weight per delay for future blasting works without increasing possibility of damaging surrounding structures.

Go to article

Authors and Affiliations

Siniša Stanković
Mario Dobrilović
Vinko Škrlec
Download PDF Download RIS Download Bibtex

Abstract

Mining the lower seams in a sequence of shallow, closely spaced coal seams causes serious air leakage in the upper goaf; this can easily aggravate spontaneous combustion in abandoned coal. Understanding the redevelopment of fractures and the changes in permeability is of great significance for controlling coal spontaneous combustion in the upper goaf. Based on actual conditions at the 22307 working face in the Bulianta coal mine, Particle Flow Code (PFC) and a corresponding physical experiment were used to study the redevelopment of fractures and changes in permeability during lower coal seam mining. The results show that after mining the lower coal seam, the upper and lower goafs become connected and form a new composite goaf. The permeability and the number of fractures in each area of the overlying strata show a pattern of „stability-rapid increase-stability“ as the lower coal seam is mined and the working face advances. Above the central area of goaf, the permeability has changed slightly, while in the open-cut and stop line areas are significant, which formed the main air leakage passage in the composite goaf.

Go to article

Authors and Affiliations

Zhenqi Liu
Xiaoxing Zhong
Botao Qin
Hongwei Ren
Ang Gao
Download PDF Download RIS Download Bibtex

Abstract

Based on data collected during an UCG pilot-scale experiment that took place during 2014 at Wieczorek mine, an active mine located in Upper Silesia (Poland), this research focuses on developing a dynamic fire risk prevention strategy addressing underground coal gasification processes (UCG) within active mines, preventing economic and physical losses derived from fires.

To achieve this goal, the forecasting performance of two different kinds of artificial neural network models (generalized regression and multi-layer feedforward) are studied, in order to forecast the syngas temperature at the georeactor outlet with one hour of anticipation, thus giving enough time to UCG operators to adjust the amount and characteristics of the gasifying agents if necessary.

The same model could be used to avoid undesired drops in the syngas temperature, as low temperature increases precipitation of contaminants reducing the inner diameter of the return pipeline. As a consequence the whole process of UGC might be stopped. Moreover, it could allow maintaining a high temperature that will lead to an increased efficiency, as UCG is a very exothermic process.

Results of this research were compared with the ones obtained by means of Multivariate Adaptative Regression Splines (MARS), a non-parametric regression technique able to model non-linearities that cannot be adequately modelled using other regression methods.

Syngas temperature forecast with one hour of anticipation at the georeactor outlet was achieved successfully, and conclusions clearly state that generalized regression neural networks (GRNN) achieve better forecasts than multi-layer feedforward networks (MLFN) and MARS models.

Go to article

Authors and Affiliations

Alicja Krzemień
Download PDF Download RIS Download Bibtex

Abstract

The currently applicable legal provisions and also the economic concepts emphasize the importance of circular economy. In this aspect, it is very important to reduce the waste production respectively planning and running a business. Technical research is the key to finding a new applications for waste, in particular disposed on landfilling. Mining and energy industries belong to the biggest producers of waste in Poland. The total share of these two branches in waste production is up to 70% (mining and quarrying 53%; electricity, gas, steam and air conditioning supplay 17%). In environment, economy and social aspect, it is very important to develop this waste. The paper presents research on the physico-mechanical properties of the aggregates based on colliery shale supplemented by fly ash (20% - 40% supplement of fly ash). The following tests should be mentioned among performed: particle size distribution, the sand equivalent test, freeze resistance and direct shear tests. Also the chemical properties found in the literature was invoked. The research shows good physico-mechanical properties of the mixes, such as cohesion (44.62 kPa - 68.57 kPa) or internal firiction angle (34.74° - 40.52°). Though low resistance to weathering and a large susceptibility to frost heave (the mass loss after the freezing cycles is 76%) may limit its applicatin in road engineering. The sand equivalent tests were made only for aggregates. Tested materials shows usefulness for earthen structures. However, the research should be supplemented by chemical tests and also observations of the material properties changes as the effect of time. The research on the leachability of chemical pollutants, which will determine the acceptable share of ash in the mix, could be especially significant. The fact that fly ash contains a lot of sulphates and chlorides, which leach into the environment may pose a threat to living organisms.

Go to article

Authors and Affiliations

Mateusz Blajer
Agnieszka Stopkowicz
Justyna Adamczyk
Marek Cała
Download PDF Download RIS Download Bibtex

Abstract

This article presents the results of laboratory tests of the physical and mechanical properties of various types of sandstone selected from ten quarries from Carpathian flysch. The parameters were used to evaluate the quality of the sandstone and its suitability for use as armourstone in accordance with applicable standards and quality guidelines. The requirements of the BN-79/8952-31, EN 13383-1:2003 and the CIRIA, CUR, CETMEF (2007) standards were compared. Sandstone can display a large variability of parameters depending on its origin. This, in turn, results in a varying degree of its susceptibility to the destructive effects of water and climate.

Go to article

Authors and Affiliations

Joanna Hydzik-Wiśniewska
Agnieszka Pękala
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the implementation of the method of own residual magnetic field to identify damages occurring in a steel rope. A special measuring head with 4 residual magnetic field sensors, spaced evenly every 90 degrees, was used. The measuring head was also equipped with a path or a time sensor. The measurement consists in recording normal and tangential components of the residual magnetic field and their gradients. This method has a number of advantages with regard to classic magnetic methods. It does not require special magnetisation of the rope or its special preparation for testing. Validation of the obtained test results of this rope was conducted by the classic MTR method and a very good compliance in the detection of damage was demonstrated. It was found that the strong magnetisation used in the MTR method does not affect the detection of damage to the rope using the residual magnetic field method.

Go to article

Authors and Affiliations

Janusz Juraszek
Download PDF Download RIS Download Bibtex

Abstract

In the longwall exploitation system, the main gates are subject of the most intensive movements of the rock mass, where the proximity of the excavation front is a key factor. The paper presents the results of a research on the constants mb and s of Hoek-Brown failure criterion for the rocks surrounding the gallery: shale, sandy shale, coal and medium-grained sandstone, in relation to the distance to longwall face. The research comprised numerical modeling based on convergence monitoring records. The convergence measurements were carried out on three stations in a selected maingate in a coal mine from Upper Silesia Coal Basin near Jastrzębie-Zdrój, concurrently with changing distance to the longwall face. The measured were the width, the height and the heave of the floor of the gate. The measurements showed that the convergence at the longwall-maingate crossing was 1.5-3 times greater than in the locations much further from the longwall face. It was demonstrated that this effect was due to continuously changing properties of the rock-mass surrounding the gallery that can be expressed as decreasing empirical parameters mb i s of Hoek-Brown’s criterion. These parameters are decreasing exponentially together with the distance to the longwall face The consistency between the theoretical and factual curve varies between 70% to 98%. The change of each of the parameters can be described by general equation P = a· exp(–b·d), where a, b are constants, and d is the distance to the excavation face. The authors highlight that during the measurements period the horizontal stress was 1.45 to 1.61 times greater than the concurrent vertical stress. The so high horizontal stress causes heave of unsupported gallery floor which is commonly observed in the mines in Silesia.

Go to article

Authors and Affiliations

Piotr Małkowski
Łukasz Ostrowski
Download PDF Download RIS Download Bibtex

Abstract

In this study, emulsified kerosene was investigated to improve the flotation performance of ultrafine coal. For this purpose, NP-10 surfactant was used to form the emulsified kerosene. Results showed that the emulsified kerosene increased the recovery of ultrafine coal compared to kerosene. This study also revealed the effect of independent variables (emulsified collector dosage (ECD), frother dosage (FD) and impeller speed (IS)) on the responses (concentrate yield (γC %), concentrate ash content ( %) and combustible matter recovery (ε %)) based on Random Forest (RF) model and Genetic Algorithm (GA). The proposed models for γC %, % and ε% showed satisfactory results with R2. The optimal values of three test variables were computed as ECD = 330.39 g/t, FD = 75.50 g/t and IS = 1644 rpm by using GA. Responses at these experimental optimal conditions were γC % = 58.51%,  % = 21.7% and ε % = 82.83%. The results indicated that GA was a beneficial method to obtain the best values of the operating parameters. According to results obtained from optimal flotation conditions, kerosene consumption was reduced at the rate of about 20% with using the emulsified kerosene.

Go to article

Authors and Affiliations

Ozcan Oney
Download PDF Download RIS Download Bibtex

Abstract

Leak detection in transmission pipelines is important for safe operation of pipelines. The probability of leaks may be occurred at any time and location, therefore pipeline leak detection systems play a key role in minimization of the occurrence of leaks probability and their impacts. During the operation of the network there are various accidents or intentional actions that lead to leaks of gas pipelines. For each network failure, a quick reaction is needed before it causes more damage. Methods that are used to detect such network failures are three-staged-: early identification of leakage, an accurate indication of its location and determine the amount of lost fluid. Methods for leak detection can be divided into two main groups: external methods (hardware) and internal methods (software). External leak detection methods require additional, often expensive equipment mounted on the network, or use systems that could display only local damage on the pipeline. The alternative are the internal methods which use available network measurements and signalling gas leakage signal based on the mathematical models of the gas flow. In this paper, a new method of leak detection based on a mathematical model of gas flow in a transient state has been proposed.

Go to article

Authors and Affiliations

Małgorzata Amanda Kwestarz
Andrzej Janusz Osiadacz
Łukasz Kotyński
Download PDF Download RIS Download Bibtex

Abstract

Reconciliation between two copper ore mines transferred ore from one mine to another for processing in enrichment plants generated the need to regularly study the amount and composition of the ore on the conveyor connecting these two mines. To ensure the objectivity of the study, taking composite samples and their analysis was entrusted to a specialized outside laboratory. However, the managing staff of both mines still have doubts whether sampling results reflect correctly content of transported ore especially when the fed is highly variable. In order to investigate how the relatively low sampling rate affects the accuracy and precision of the measurement, the article investigates the hypothetical situation on the linking conveyor with the ore having extremely differentiated mineralization: 80% of almost barren rock (below 0.7% Cu) and 20% of the richly mineralized shale (around 10% Cu). Such ore occurs in some areas of the mine, from which it is fed onto a connecting conveyor. Through simulation techniques it was examined how the frequency of sampling can influence the distribution of the pooled sample results. It turned out that for 16 randomly selected samples in the following 15 minutes time intervals of a working shift, the spread of results around the simulated value is very large. A satisfactory accuracy level for the estimations of mean Cu content in the transported ore is achieved when the samples are collected at 30-second intervals. Only with sampling frequency close to on-line scanner parameters the probability of obtaining estimations with deviation exceeding 10% drops to the level of 2%. In the case of extremely differentiated ore doubts about confidence in the described measurements are fully confirmed, because with over 50% probability a single measurement could be deviated by 50% up and down from the true value.

Go to article

Authors and Affiliations

Leszek Jurdziak
Witold Kawalec
Robert Król

This page uses 'cookies'. Learn more