Details
Title
Influences of carbody vertical flexibility on ride comfort of railway vehiclesJournal title
Archive of Mechanical EngineeringYearbook
2017Volume
vol. 64Issue
No 2Affiliation
Dumitriu, Mădălina : Department of Railway Vehicles, University Politehnica of Bucharest, Romania ; Cruceanu, Cătălin : Department of Railway Vehicles, University Politehnica of Bucharest, RomaniaAuthors
Keywords
railway vehicles ; vertical vibrations ; carbody flexibility ; ride comfort ; comfort indexDivisions of PAS
Nauki TechniczneCoverage
219-238Publisher
Polish Academy of Sciences, Committee on Machine BuildingBibliography
[1] M. Dumitriu and I. Sebeşan. The quality of railway vehicles. MatrixRom, Bucharest, 2016. (in Romanian).[2] J. Zhou, R. Goodall, L. Ren, and H. Zhang. Influences of car body vertical flexibility on ride quality of passenger railway vehicles. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 223(5):461–471, 2009. doi: 10.1243/09544097JRRT272.
[3] G. Diana, F. Cheli, A. Collina, R. Corradi, and S. Melzi. The development of a numerical model for railway vehicles comfort assessment through comparison with experimental measurements. Vehicle System Dynamics, 38(3):165–183, 2002. doi: 10.1076/vesd.38.3.165.8287.
[4] F. Cheli and R. Corradi. On rail vehicle vibrations induced by track unevenness: Analysis of the excitation mechanism. Journal of Sound and Vibration, 330(15):3744–3765, 2011. doi: 10.1016/j.jsv.2011.02.025.
[5] D. Gong, J. Zhou, and W. Sun. On the resonant vibration of a flexible railway car body and its suppression with a dynamic vibration absorber. Journal of Vibration and Control, 19(5):649–657, 2013. doi: 10.1177/1077546312437435.
[6] M. Dumitriu. Analysis of the dynamic response in the railway vehicles to the track vertical irregularities. Part II: The numerical analysis. Journal of Engineering Science and Technology Review, 8(4):32–39, 2015.
[7] P. Carlbom. Carbody and Passengers in Rail Vehicle Dynamics. Ph.D. Thesis, KTH, Vehicle Engineering, Stockholm, Sweden, 2000. NR 20140805.
[8] T. Tomioka, T. Takigami, and Y. Suzuki. Numerical analysis of three-dimensional flexural vibration of railway vehicle car body. Vehicle System Dynamics, 44(sup1):272–285, 2006. doi: 10.1080/00423110600871301.
[9] M. Dumitriu. On the critical points of vertical vibration in a railway vehicle. Archive of Mechanical Engineering, 61(4):609–625, 2014. doi: 10.2478/meceng-2014-0035.
[10] ENV 12299: Railway applications ride comfort for passengers measurement and evaluation, 1997.
[11] UIC 513 R: Guidelines for evaluating passenger comfort in relation to vibration in railway vehicle. International Union of Railways, 1994.
[12] S. Bruni, J. Vinolas, M. Berg, O. Polach, and S. Stichel. Modelling of suspension components in a rail vehicle dynamics context. Vehicle System Dynamics, 49(7):1021–1072, 2011. doi: 10.1080/00423114.2011.586430.
[13] H. Ye, J. Zeng, Q. Wang, and X. Han. Study on carbody flexible vibration considering layout of underneath equipment and doors. In Proceedings of 4th International Conference on Sensors, Measurement and Intelligent Materials (ICSMIM 2015), pages 1177–1183, Shenzhen, China, 27-28 Dec. 2015. Atlanitis Press, 2016. doi : 10.2991/icsmim-15.2016.217.
[14] K. Wang, H. Xia, M. Xu, and W. Guo. Dynamic analysis of train-bridge interaction system with flexible car-body. Journal of Mechanical Science and Technology, 29(9):3571–3580, 2015. doi: 10.1007/s12206-015-0801-y.
[15] C 116: Interaction between vehicles and track, RP 1, Power spectral density of track irregulari- ties, Part 1: Definitions, conventions and available data, 1971.
[16] I. Sebeşan and T. Mazilu. Vibrations of the railway vehicles. MatrixRom, Bucharest, 2010. (in Romanian).
[17] J. Zhou and S. Wenjing. Analysis on geometric filtering phenomenon and flexible car body resonant, vibration of railway vehicles. Journal of Tongji University, Natural Science, 37(12):1653–1657, 2009.
[18] D. Gong, Y.J. Gu, and J.S. Zhou. Study on geometry filtering phenomenon and flexible car body resonant vibration of articulated trains. In Advanced Materials Researches, Engineering and Manufacturing Technologies in Industry, volume 787 of Advanced Materials Research, pages 542–547. Trans Tech Publications, Nov. 2013. doi: 10.4028/www.scientific.net/AMR.787.542.
[19] F. Cheli and R. Corradi. On rail vehicle vibrations induced by track unevenness: Analysis of the excitation mechanism. Journal of Sound and Vibration, 330(15):3744–3765, 2011. doi: 10.1016/j.jsv.2011.02.025.
[20] M. Dumitriu. Geometric filtering effect of vertical vibrations of railway vehicles. Analele Universităţii “Eftimie Murgu” Resiţa, (1):48–61, 2012.
[21] M. Dumitriu. Considerations on the geometric filtering effect of the bounce and pitch movements in railway vehicles. Annals of the Faculty of Engineering Hunedoara, 12(3):155–164, 2014.