Szczegóły

Tytuł artykułu

Numerical analysis of a small-size vertical-axis wind turbine performance and averaged flow parameters around the rotor

Tytuł czasopisma

Archive of Mechanical Engineering

Rocznik

2017

Wolumin

vol. 64

Numer

No 2

Afiliacje

Rogowski, Krzysztof : Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology, Poland. ; Maroński, Ryszard : Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology, Poland. ; Piechna, Janusz : Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology, Poland.

Autorzy

Słowa kluczowe

vertical-axis wind turbines ; aerodynamics ; computational fluid dynamics

Wydział PAN

Nauki Techniczne

Zakres

205-218

Wydawca

Polish Academy of Sciences, Committee on Machine Building

Bibliografia

[1] B.F. Blackwell. The vertical-axis wind turbine “How it works”. Energy Report, SLA-74-0160, Sandia Laboratories, 1974.
[2] K. Jankowski. Vertical axis turbine of Darrieus h-type with variable blade incidence angle concept design. M.Sc. Thesis, Warsaw University of Technology, Poland, 2009.
[3] I. Paraschivoiu. Wind Turbine Design: With Emphasis on Darrieus Concept. Polytechnic International Press, Canada, 2002.
[4] I. Paraschivoiu, O. Trifu, and Saeed F. H-Darrieus wind turbine with blade pitch control. International Journal of Rotating Machinery, 2009:ID 505343, 2009. doi: 10.1155/2009/505343.
[5] R. Bravo, S. Tullis, and S. Ziada. Performance testing of a small vertical-axis wind turbine. In Proceedings of the 21st Canadian Congress of Applied Mechanics CANCAM, Toronto, Canada, 7-9 June 2007.
[6] M.R. Islam, S. Mekhilef, and R. Saidur. Progress and recent trends of wind energy technology. Renewable and Sustainable Energy Reviews, 21:456–468, 2013. doi: 10.1016/j.rser.2013.01.007.
[7] F. Scheurich, T.M. Fletcher, and R.E. Brown. The influence of blade curvature and helical blade twist on the performance of a vertical-axis wind turbine. In 4 8th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, USA, 4-7 Jan. 2010. doi: 10.2514/6.2010-1579.
[8] H.A. Madsen, T.J. Larsen, U.S. Paulsen, and L. Vita. Implementation of the actuator cylinder flow model in the HAWC2 code for aeroelastic simulations on vertical axis wind turbines. In Proceedings of 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Dallas, USA, 7-10 Jan. 2013. doi: 10.2514/6.2013-913.
[9] W. Tjiu, T. Marnoto, S. Mat, M.H. Ruslan, and K. Sopian. Darrieus vertical axis wind turbine for power generation II: Challenges in HAWT and the opportunity of multimegawatt Darrieus VAWT development. Renewable Energy, 75:560–571, March 2015. doi: 10.1016/j.renene.2014.10.039.
[10] M. Islam, D.S.K. Ting, and A. Fartaj. Aerodynamic models for Darrieus-type straight-bladed vertical axis wind turbines. Renewable and Sustainable Energy Reviews, 12(4):1087–1109, 2008. doi: 10.1016/j.rser.2006.10.023.
[11] M Abdul Akbar and V Mustafa. A new approach for optimization of vertical axis wind turbines. Journal of Wind Engineering and Industrial Aerodynamics, 153:34–45, 2016. doi: 10.1016/j.jweia.2016.03.006.
[12] J.H. Strickland, T. Smith, and K. Sun. A vortex model of the Darrieus turbine: An analytical and experimental study. Report SAND81-7017, Sandia National Laboratories, 1981.
[13] C.S. Ferreira, H.A. Madsen, M. Barone, B. Roscher, P. Deglaire, and I. Arduin. Comparison of aerodynamic models for vertical axis wind turbines. Journal of Physics: Conference Series, 524(1):012125, 2014. doi: 10.1088/1742-6596/524/1/012125.
[14] P. Lichota and D.A. Noreña. A priori model inclusion in the multisine maneuver design. In 17th International Carpathian Control Conference (ICCC), pages 440–445, Tatranska Lomnica, Slovakia, 29 May – 1 June 2016. doi: 10.1109/CarpathianCC.2016.7501138.
[15] A. Allet, S. Hallé, and I. Paraschivoiu. Numerical simulation of dynamic stall around an airfoil in Darrieus motion. Journal of Solar Energy Engineering, 121:69–76, 1999. 10.1115/1.2888145.
[16] C.S. Ferreira, H. Bijl, G. van Bussel, and G. van Kuik. Simulating dynamic stall in a 2D VAWT: modeling strategy, verification and validation with particle image velocimetry data. Journal of Physics: Conference Series, 75:012023, 2007. doi: 10.1088/1742-6596/75/1/012023.
[17] E. Amet, T. Maître, C. Pellone, and J.L. Achard. 2D numerical simulations of blade-vortex interaction in a Darrieus turbine. Journal of Fluids Engineering, 131(11):111103, 2009. doi: 10.1115/1.4000258.
[18] W.Z. Shen, J.H. Zhang, and J.N. Sørensen. The actuator surface model: a new Navier-Stokes based model for rotor computations. Journal of Solar Energy Engineering, 131(1):011002, 2009. doi: 10.1115/1.3027502.
[19] F. Schuerich and R.E. Brown. Effect of dynamic stall on the aerodynamics of vertical-axis wind turbines. AIAA Journal, 49(11):2511–2521, 2011. doi: 10.2514/1.J051060.
[20] A. Laneville and P. Vittecoq. Dynamic stall: the case of the vertical axis wind turbine. Journal of Solar Energy Engineering, 108(2):140–145, 1986. doi: 10.1115/1.3268081.
[21] M.C. Claessens. The Design and Testing of Airfoils for Application in Small Vertical Axis Wind Turbines. M.Sc. Thesis, Delft University of Technology, The Netherlands, 2006.
[22] P. Marsh, D. Ranmuthugala, I. Penesis, and G. Thomas. Three dimensional numerical simulations of a straight-bladed vertical axis tidal turbine. In 1 8th Australasian Fluid Mechanics Conference, Launceston, Australia, 3-7 December 2012.
[23] K. Rogowski. Analysis of Performance of the Darrieus Wind Turbines. Ph.D. Thesis, Warsaw University of Technology, Poland, 2014.
[24] K. Rogowski and R. Maronski. CFD computation of the Savonius rotor. Journal of Theoretical and Applied Mechanics, 53(1):37–45, 2015. doi: 10.15632/jtam-pl.53.1.37
[25] F.R. Menter. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32(8):1598–1605, 1994. doi: 10.2514/3.12149.
[26] O. Guerri, A. Sakout, and K. Bouhadef. Simulations of the fluid flow around a rotating vertical axis wind turbine. Wind Engineering, 31(3):149–163, 2007. doi: 10.1260/030952407781998819.
[27] F. Scheurich, T.M. Fletcher, and R.E. Brown. Simulating the aerodynamic performance and wake dynamics of a vertical-axis wind turbine. Wind Energy, 14(2):159–177, 2011. doi: 10.1002/we.409.

Data

2017

Typ

Artykuły / Articles

Identyfikator

DOI: 10.1515/meceng-2017-0013 ; ISSN 0004-0738, e-ISSN 2300-1895

Źródło

Archive of Mechanical Engineering; 2017; vol. 64; No 2; 205-218

Referencje

Tjiu (2015), Darrieus vertical axis wind turbine for power generation II : Challenges in HAWT and the opportunity of multi - megawatt Darrieus VAWT development, Renewable Energy, 75, 560. ; Shen (2009), The actuator surface model : a new Navier - Stokes based model for rotor computations of, Journal Solar Energy Engineering, 131, doi.org/10.1115/1.3027502 ; Ferreira (2014), Comparison of aerodynamic models for vertical axis wind turbines of Physics :, Journal Conference Series, 524, doi.org/10.1088/1742-6596/524/1/012125 ; Schuerich (2011), Effect of dynamic stall on the aerodynamics of vertical - axis wind turbines, AIAA journal, 49, 2511, doi.org/10.2514/1.J051060 ; Paraschivoiu (2009), Saeed Darrieus wind turbine with blade pitch control of Rotating Machinery ID, International Journal, 505343, doi.org/10.1155/2009/505343 ; Scheurich (2011), Simulating the aerodynamic performance and wake dynamics of a vertical - axis wind turbine, Wind Energy, 14, 159, doi.org/10.1002/we.409 ; Menter (1994), Two - equation eddy - viscosity turbulence models for engineering applications, AIAA Journal, 32, 1598, doi.org/10.2514/3.12149 ; Amet (2009), numerical simulations of blade - vortex interaction in a Darrieus turbine of, Journal Fluids Engineering, 11, 131, doi.org/10.1115/1.4000258 ; Blackwell (1974), The vertical - axis wind turbine How it works Report Sandia Laboratories, Energy, 74, 0160. ; Islam (2013), Progress and recent trends of wind energy technology Renewable and Sustainable, Energy Reviews, 21, 456, doi.org/10.1016/j.rser.2013.01.007 ; Laneville (1986), Dynamic stall : the case of the vertical axis wind turbine of, Journal Solar Energy Engineering, 108, 140, doi.org/10.1115/1.3268081 ; Ferreira (2007), van Bussel van Kuik Simulating dynamic stall in a modeling strategy , verification and validation with particle image velocimetry data of Physics :, Journal Conference Series, 75, 012023, doi.org/10.1088/1742-6596/75/1/012023 ; Islam (2008), Aerodynamic models for Darrieus - type straight - bladed vertical axis wind turbines Renewable and Sustainable, Energy Reviews, 12, 1087, doi.org/10.1016/j.rser.2006.10.023 ; Rogowski (2015), CFD computation of the Savonius rotor of Theoretical and, Journal Applied Mechanics, 53, 37, doi.org/10.15632/jtam-pl.53.1.37 ; Madsen (2013), Implementation of the actuator cylinder flow model in the HAWC code for aeroelastic simulations on vertical axis wind turbines InProceedings of st AIAA Aerospace Meeting including the New and Jan, Sciences Horizons Forum Aerospace Exposition USA, 7, doi.org/10.2514/6.2013-913 ; Allet (1999), Numerical simulation of dynamic stall around an airfoil in Darrieus motion of, Journal Solar Energy Engineering, 10, 121. ; Marsh (2012), Three dimensional numerical simulations of a straight - bladed vertical axis tidal turbine In th Australasian Fluid Mechanics Conference, Australia, 3. ; Scheurich (2010), The influence of blade curvature and helical blade twist on the performance of a vertical - axis wind turbine In th AIAA Aerospace Meeting Including the New and Jan, Sciences Horizons Forum Aerospace Exposition USA, 4, doi.org/10.2514/6.2010-1579 ; Abdul Akbar (2016), A new approach for optimization of vertical axis wind turbines of Wind Engineering and, Journal Industrial Aerodynamics, 153, doi.org/10.1016/j.jweia.2016.03.006 ; Guerri (2007), Simulations of the fluid flow around a rotating vertical axis wind turbine Wind, Engineering, 31, 149, doi.org/10.1260/030952407781998819
×