Details
Title
Influence of rotating magnetic field on gas-liquid volumetric mass transfer coefficientJournal title
Chemical and Process EngineeringYearbook
2017Volume
vol. 38Issue
No 3Authors
Keywords
mass transfer ; volumetric mass transfer coefficient ; rotating magnetic fieldDivisions of PAS
Nauki TechniczneCoverage
423-432Publisher
Polish Academy of Sciences Committee of Chemical and Process EngineeringDate
2017.09.30Type
Artykuły / ArticlesIdentifier
DOI: 10.1515/cpe-2017-0032 ; ISSN 2300-1925 (Chemical and Process Engineering)Source
Chemical and Process Engineering; 2017; vol. 38; No 3; 423-432References
Karimi (2013), Oxygen mass transfer in a stirred tank bioreactor using different impeller configurations for environmental purposes Iran, Environ Healt, 10, doi.org/10.1186/1735-2746-10-6 ; Heim (1995), Aeration of bioreactors by self - aspirating impellers, Chem Eng J Bioch Eng, 58, 59, doi.org/10.1016/0923-0467(94)06093-2 ; Ozbek (2001), The studies on the oxygen mass transfer coefficient in a bioreactor, Proc Biochem, 729, doi.org/10.1016/S0032-9592(00)00272-7 ; Weng (1992), Continuous ethanol fermentation in a three - phase magnetic fluidized bed bioreactor Fluidized Processes Theory and Practice, AIChE Symposium Series, 88. ; Moffat (1965), On fluid flow induced by a rotating magnetic field, Fluid Mech, 22, 521, doi.org/10.1017/S0022112065000940 ; Garcia (2009), Bioreactor scale - up and oxygen transfer rate in microbial processes : An overview, Biotechnol Adv, 27, 153, doi.org/10.1016/j.biotechadv.2008.10.006 ; Kitazawa (2001), Magnetic field effects on water air powder, Physica, 294, doi.org/10.1016/S0921-4526(00)00749-3 ; Hajiani (2013), a Remotely excited magnetic nanoparticles and gas liquid mass transfer in Taylor flow regime, Chem Eng Sci, 257, doi.org/10.1016/j.ces.2013.01.052 ; Rakoczy (2011), Theoretical and experimental analysis of the influence of the rotating magnetic field on the selected unit operations and processes of chemical engineering Academic Publisher of West Pomeranian University of Technology ISBN, null, 978. ; Chisti (1989), Airlift New York, USA. ; Spitzer (1999), Application of rotating magnetic fields in Czochralski crystal growth, Prog Cryst Growth Ch, 38, doi.org/10.1016/S0960-8974(99)00008-X ; Mehedintu (1997), Proliferation response of yeast Saccharomyces cerevisiae on electromagnetic field parameters, Bioener, 43, doi.org/10.1016/S0302-4598(96)05184-7 ; Chen (2001), Leu Hydrodynamics and mass transfer in three - phase magnetic fluidized beds, Powder Technol, 117, doi.org/10.1016/S0032-5910(00)00370-3 ; Mills (1999), Reaction engineering of emerging oxidation processes, Catal Today, 48, 17, doi.org/10.1016/S0920-5861(98)00354-X ; Torab (2008), Mass transfer coefficients in a Hanson mixer - settler extraction column, Chem Eng, 25, 473, doi.org/10.1590/S0104-66322008000300005 ; Li (2006), Interphase mass transfer in magnetically stabilized bed with amorphous alloy catalyst Chinese, J Chem Eng, 14, 734, doi.org/10.1016/S1004-9541(07)60004-4 ; Gaafar (2008), The effect of electromagnetic field on protein molecular structure ofE Coliand its pathogenesis, null, 18, 145. ; Hristov (2011), Critical analysis of data concerningSaccharomyces cerevisiaefree - cell proliferations and fermentations assisted by magnetic and electromagnetic fields, Int Rev Chem Eng, 3. ; Santos (2010), Effects of magnetic fields on biomass and glutathione production by the yeastSaccharomyces cerevisiae, Process Biochem, 45, doi.org/10.1016/j.procbio.2010.05.008 ; Rakoczy (2013), Mixing energy investigations in a liquid vessel that is mixed by using a rotating magnetic field Process, Chem Eng Process, 1, doi.org/10.1016/j.cep.2013.01.012 ; Ciechańska (1998), Modification of Bacterial Fibres, Cellulose Text East Eur, 61. ; Hajiani (2013), Giant effective liquid - self diffusion in stagnant liquids by magnetic nanomixing, Chem Eng Process, 71, doi.org/10.1016/j.cep.2013.01.014 ; Hristov (2010), Magnetic field assisted fluidization unified approach Part Mass Transfer Magnetically assisted bioprocesses, Rev Chem Eng, 26. ; Gorobets (2013), Self - organization of magnetic nanoparticles in providingSaccharomyces cerevisiaeyeasts with magnetic properties, Magn Mater, 337, doi.org/10.1016/j.jmmm.2013.01.004 ; Rakoczy (2016), The influence of a ferrofluid in the presence of an external rotating magnetic field on the growth rate and cell metabolic activity of a wine yeast strain, Biochem Eng J, 109, doi.org/10.1016/j.bej.2016.01.002 ; Rakoczy (2011), Studies of a mixing process induced by a transverse rotating magnetic field, Chem Eng Sci, 66, doi.org/10.1016/j.ces.2011.02.021 ; Galaction (2004), Prediction of oxygen mass transfer coefficients in stirred bioreactors for bacteria yeasts and fungus broths, Biochem Eng J, 20, 85, doi.org/10.1016/j.bej.2004.02.005 ; Fijałkowski (null), Modification of bacterial cellulose through exposure to the rotating magnetic field, Carbohyd Polym, 2015, doi.org/10.1016/j.carbpol.2015.07.011 ; Fabian (2002), Bubbles flows fields, Science science, 296, doi.org/10.1126/.1072074 ; Volz (1999), Thermoconvective instability in a rotating magnetic field, Int J Heat Mass Tran, 1037, doi.org/10.1016/S0017-9310(98)00168-9 ; Iwasaka (2004), Strong static magnetic field effects on yeast proliferation and distribution, Bioelectrochemistry, 65, 59, doi.org/10.1016/j.bioelechem.2004.04.002 ; Montes (1999), Prediction ofkLain yeast broths, Proc Biochem, 549, doi.org/10.1016/S0032-9592(98)00125-3 ; Galaction (2004), a Enhancement of oxygen mass transfer in stirred bioreactors using oxygen - vectors Simulated fermentation broths, Biosyst Eng, 26, 1, doi.org/10.1007/s00449-004-0353-5 ; Qodah (2000), Phase holdup and gas - to - liquid mass transfer coefficient in magneto stabilized airlift fermenter, Chem Eng J, 79, 41, doi.org/10.1016/S1385-8947(00)00142-X ; Anton (2010), Exposure to high static or pulsed magnetic fields does not affect cellular processes in the yeast Saccharomyces cerevisiae, Bioelectromagnetics, 31, 28, doi.org/10.1002/bem.20523 ; Chisti (2002), Oxygen transfer and mixing in mechanically agitated airlift bioreactors, Biochem Eng J, 143. ; El (2013), of static files exposure effect on yeast and cells using electrorotation bpj, Biophys J, 104.Editorial Board
Editorial Board
Ali Mesbah, UC Berkeley, USA 0000-0002-1700-0600
Anna Gancarczyk, Institute of Chemical Engineering, Polish Academy of Sciences, Poland 0000-0002-2847-8992
Anna Trusek, Wrocław University of Science and Technology, Poland 0000-0002-3886-7166
Bettina Muster-Slawitsch, AAE Intec, Austria 0000-0002-5944-0831
Daria Camilla Boffito, Polytechnique Montreal, Canada 0000-0002-5252-5752
Donata Konopacka-Łyskawa, Gdańsk University of Technology, Poland 0000-0002-2924-7360
Dorota Antos, Rzeszów University of Technology, Poland 0000-0001-8246-5052
Evgeny Rebrov, University of Warwick, UK 0000-0001-6056-9520
Georgios Stefanidis, National Technical University of Athens, Greece 0000-0002-4347-1350
Ireneusz Grubecki, Bydgoszcz Univeristy of Science and Technology, Poland 0000-0001-5378-3115
Johan Tinge, Fibrant B.V., The Netherlands 0000-0003-1776-9580
Katarzyna Bizon, Cracow University of Technology, Poland 0000-0001-7600-4452
Katarzyna Szymańska, Silesian University of Technology, Poland 0000-0002-1653-9540
Marcin Bizukojć, Łódź University of Technology, Poland 0000-0003-1641-9917
Marek Ochowiak, Poznań University of Technology, Poland 0000-0003-1543-9967
Mirko Skiborowski, Hamburg University of Technology, Germany 0000-0001-9694-963X
Nikola Nikacevic, University of Belgrade, Serbia 0000-0003-1135-5336
Rafał Rakoczy, West Pomeranian University of Technology, Poland 0000-0002-5770-926X
Richard Lakerveld, Hong Kong University of Science and Technology, Hong Kong 0000-0001-7444-2678
Tom van Gerven, KU Leuven, Belgium 0000-0003-2051-5696
Tomasz Sosnowski, Warsaw University of Technology, Poland 0000-0002-6775-3766