Details
Title
Use of an active element for dynamic control of a thin-walled laminated beam with kinematic excitationJournal title
Archive of Mechanical EngineeringYearbook
2019Volume
vol. 66Issue
No 3Authors
Affiliation
Gawryluk, Jarosław : Department of Applied Mechanics, Mechanical Engineering Faculty, Lublin University of Technology, Lublin, Poland. ; Mitura, Andrzej : Department of Applied Mechanics, Mechanical Engineering Faculty, Lublin University of Technology, Lublin, Poland. ; Teter, Andrzej : Department of Applied Mechanics, Mechanical Engineering Faculty, Lublin University of Technology, Lublin, Poland.Keywords
proportional control ; composite beam ; MFC ; dynamics ; FEMDivisions of PAS
Nauki TechniczneCoverage
379-387Publisher
Polish Academy of Sciences, Committee on Machine BuildingBibliography
[1] R.B.Williams, G. Park, D.J. Inman, and W.K.Wilkie. An overview of composite actuators with piezoceramic fibers. In: Proceedings of 20th International Modal Analysis Conference, Los Angeles, CA, 4–7 February, 2002, SPIE – The International Society for Optical Engineering, 4753:421–427, 2002.[2] B.W. Lacroix. On the mechanics, computational modeling and design implementation of piezoelectric actuators on micro air vehicles. Ph.D. Thesis, University of Florida, Gainesville, USA, 2013.
[3] T.A. Probst. Evaluating the Aerodynamic Performance of MFC-Actuated Morphing Wings to Control a Small UAV. Masters Thesis, Virginia Polytechnic Institute and State University, Blacksburg, USA, 2012.
[4] M. Borowiec, M. Bochenski, J. Gawryluk, and M. Augustyniak. Analysis of the macro fiber composite characteristics for energy harvesting efficiency. In: Awrejcewicz J., editor, Dynamical Systems: Theoretical and Experimental Analysis, vol. 182 of Springer Proceedings in Mathematics and Statistics Series, pages 27–37, 2016. doi: 10.1007/978-3-319-42408-8_3.
[5] J. Latalski. Modelling of macro fiber composite piezoelectric active elements in ABAQUS system. Eksploatacja i Niezawodność – Maintenance and Reliability, 52(4):72–78, 2011.
[6] A. Teter and J. Gawryluk. Experimental modal analysis of a rotor with active composite blades. Composite Structures, 153:451–467, 2016. doi: 10.1016/j.compstruct.2016.06.013.
[7] J. Gawryluk, A. Mitura, and A. Teter. Influence of the piezoelectric parameters on the dynamics of an active rotor. AIP Conference Proceedings, 1922(100010):1–8, 2018. doi: 10.1063/1.5019095.
[8] A. Mitura, J. Gawryluk, and A. Teter. Numerical and experimental studies on the rotating rotor with three active composite blades. Eksploatacja i Niezawodność – Maintenance and Reliability, 4(19):572–581, 2017. doi: 10.17531/ein.2017.4.11.
[9] J. Gawryluk, A. Mitura, and A. Teter. Dynamic response of a composite beam rotating at constant speed caused by harmonic excitation with MFC actuator. Composite Structures, 210:657–662, 2019. doi: 10.1016/j.compstruct.2018.11.083.
[10] M. Rafiee, F. Nitzsche, and M. Labrosse. Dynamics, vibration and control of rotating composite beams and blades: A critical review. Thin-Walled Structures, 119:795–819, 2017. doi: 10.1016/j.tws.2017.06.018.
[11] R. Alkhatib and M.F. Golnaraghi. Active structural vibration control: a review. The Shock and Vibration Digest, 35(5):367–383, 2003.
[12] P.P. Friedmann. On-blade control of rotor vibration, noise, and performance: just around the corner? Journal of the American Helicopter Society, 59(4):1–37, 2014. doi: 10.4050/JAHS.59.041001.
[13] J.X. Gao and W.H. Liao. Vibration analysis of simply supported beams with enhanced selfsensing active constrained layer damping treatments. Journal of Sound and Vibration, 280(1-2):329–357, 2005. doi: 10.1016/j.jsv.2003.12.019.
[14] J.C. Lin and M.H. Nien. Adaptive control of a composite cantilever beam with piezoelectric damping-modal actuators/sensors. Composite Structures, 70(2):170–176, 2005. doi: 10.1016/j.compstruct.2004.08.020.
[15] H.A. Sodano. Macro-Fiber Composites for Sensing, Actuation and Power Generation. Masters Thesis, Virginia Polytechnic Institute and State University, Blacksburg, USA, 2003.