Details

Title

Vibration control of a rotating shaft by passive mass-spring-disc dynamic vibration absorber

Journal title

Archive of Mechanical Engineering

Yearbook

2020

Volume

vol. 67

Issue

No 3

Affiliation

Chinh, Nguyen Duy : Faculty of Mechanical Engineering, Hung Yen University of Technology and Education, HungYen, Vietnam.

Authors

Keywords

torsional vibration ; optimal parameters ; minimum quadratic torque ; equivalent viscous resistance ; fixed-point

Divisions of PAS

Nauki Techniczne

Coverage

279-297

Publisher

Polish Academy of Sciences, Committee on Machine Building

Bibliography

[1] G.B. Warburton. Optimum absorber parameters for various combinations of response and excitation parameters. Earthquake Engineering and Structural Dynamics, 10(3):381–401, 1982. doi: 10.1002/eqe.4290100304.
[2] R.W. Luft. Optimal tuned mass dampers for buildings. Journal of the Structural Division, 105(12): 2766–2772, 1979.
[3] J.P. Den Hartog. Mechanical Vibrations. 4th edition, McGraw-Hill, New York, 1956.
[4] E.S. Taylor. Eliminating crankshaft torsional vibration in radial aircraft engines. SAE Technical Paper 360105, 1936. doi: 10.4271/360105.
[5] R.R.R. Sarazin. Means adapted to reduce the torsional oscillations of crankshafts. Patent 2079226, USA, 1937.
[6] J.F. Madden. Constant frequency bifilar vibration absorber. Patent 4218187, USA, 1980.
[7] H.H. Denman. Tautochronic bifilar pendulum torsion absorbers for reciprocating engines. Journal of Sound and Vibration, 159(2):251–277, 1992. doi: 10.1016/0022-460X(92)90035-V.
[8] C.P. Chao, S.H. Shaw, and C.T. Lee. Stability of the unison response for a rotating system with multiple tautochronic pendulum vibration absorbers. Journal of Applied Mechanics, 64(1):149–156, 1997. doi: 10.1115/1.2787266.
[9] C.T. Lee, S.W. Shaw, and V.T. Coppola. A subharmonic vibration absorber for rotating machinery. Journal of Vibration and Acoustics, 119(4):590–595, 1997. doi: 10.1115/1.2889766.
[10] A.S. Alsuwaiyan and S.W. Shaw. Performance and dynamic stability of general-path centrifugal pendulum vibration absorbers. Journal of Sound and Vibration, 252(5):791–815, 2002. doi: 10.1006/jsvi.2000.3534.
[11] S.W. Shaw, P.M. Schmitz, and A.G. Haddow. Tautochronic vibration absorbers for rotating systems. Journal of Computational and Nonlinear Dynamics, 1(4):283–293, 2006. doi: 10.1115/1.2338652.
[12] J. Mayet and H. Ulbrich. Tautochronic centrifugal pendulum vibration absorbers: General design and analysis. Journal of Sound and Vibration, 333(3):711–729, 2014. doi: 10.1016/j.jsv.2013.09.042.
[13] E. Vitaliani, D. Di Rocco, and M. Sopouch. Modelling and simulation of general path centrifugal pendulum vibration absorbers. SAE Technical Paper 2015-24-2387, 2015. doi: 10.4271/2015-24-2387.
[14] C. Shi, S.W. Shaw, and R.G. Parker. Vibration reduction in a tilting rotor using centrifugal pendulum vibration absorbers. Journal of Sound and Vibration, 385:55–68, 2016. doi: 10.1016/j.jsv.2016.08.035.
[15] K. Liu and J. Liu. The damped dynamic vibration absorbers: revisited and new result. Journal of Sound and Vibration, 284(3-5):1181–1189, 2005. doi: 10.1016/j.jsv.2004.08.002.
[16] N. Hoang, Y. Fujino, and P. Warnitchai. Optimal tuned mass damper for seismic applications and practical design formulas. Engineering Structures, 30(3):707–715, 2008. doi: 10.1016/j.engstruct.2007.05.007.
[17] G. Bekdaş and S.M. Nigdeli. Estimating optimum parameters of tuned mass dampers using harmony search. Engineering Structures, 33(9):2716–2723, 2011. doi: 10.1016/j.engstruct.2011.05.024.
[18] K. Ikago, K. Saito, and N. Inoue. Seismic control of single-degree-of-freedom structure using tuned viscous mass damper. Earthquake Engineering and Structural Dynamics, 41(3):453–474, 2012. doi: 10.1002/eqe.1138.
[19] H. Garrido, O. Curadelli, and D. Ambrosini. Improvement of tuned mass damper by using rotational inertia through tuned viscous mass damper. Engineering Structures, 56:2149–2153, 2013. doi: 10.1016/j.engstruct.2013.08.044.
[20] M.G. Soto and H. Adeli. Tuned mass dampers. Archives of Computational Methods in Engineering, 20(4):419–431, 2013. doi: 10.1007/s11831-013-9091-7.
[21] X.T. Vu, N.D. Chinh, D.D. Khong, and V.C Tong. Closed-form solutions to the optimization of dynamic vibration absorber attached to multi-degree-of-freedom damped linear systems under torsional excitation using the fixed-point theory. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multibody Dynamics, 232(2):237–252, 2018. doi: 10.1177/1464419317725216.
[22] N.D. Chinh. Determination of optimal parameters of the tuned mass damper to reduce the torsional vibration of the shaft by using the principle of minimum kinetic energy. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multibody Dynamics, 233(2):327–335, 2019. doi: 10.1177/1464419318804064.
[23] N.D. Chinh. Optimal parameters of tuned mass dampers for machine shaft using the maximum equivalent viscous resistance method. Journal of Science and Technology in Civil Engineering, 14(1): 127–135, 2020. doi: 10.31814/stce.nuce2020-14(1)-11.

Date

2020.08.04

Type

Artykuły / Articles

Identifier

DOI: 10.24425/ame.2020.131693 ; ISSN 0004-0738, e-ISSN 2300-1895

Source

Archive of Mechanical Engineering; 2020; vol. 67; No 3; 279-297
×