Details
Title
Solar air heater performance prediction using artificial neural network technique with relevant input variablesJournal title
Archives of ThermodynamicsYearbook
2020Volume
vol. 41Issue
No 3Authors
Keywords
Artificial Neural Network ; Solar air heater ; Thermal performance ; Multi-layer perceptronDivisions of PAS
Nauki TechniczneCoverage
255-282Publisher
The Committee of Thermodynamics and Combustion of the Polish Academy of Sciences and The Institute of Fluid-Flow Machinery Polish Academy of SciencesDate
2020.09.25Type
ArticleIdentifier
DOI: 10.24425/ather.2020.134579Source
Archives of Thermodynamics; 2020; vol. 41; No 3; 255-282Editorial Board
International Advisory BoardJ. Bataille, Ecole Central de Lyon, Ecully, France
A. Bejan, Duke University, Durham, USA
W. Blasiak, Royal Institute of Technology, Stockholm, Sweden
G. P. Celata, ENEA, Rome, Italy
L.M. Cheng, Zhejiang University, Hangzhou, China
M. Colaco, Federal University of Rio de Janeiro, Brazil
J. M. Delhaye, CEA, Grenoble, France
M. Giot, Université Catholique de Louvain, Belgium
K. Hooman, University of Queensland, Australia
D. Jackson, University of Manchester, UK
D.F. Li, Kunming University of Science and Technology, Kunming, China
K. Kuwagi, Okayama University of Science, Japan
J. P. Meyer, University of Pretoria, South Africa
S. Michaelides, Texas Christian University, Fort Worth Texas, USA
M. Moran, Ohio State University, Columbus, USA
W. Muschik, Technische Universität Berlin, Germany
I. Müller, Technische Universität Berlin, Germany
H. Nakayama, Japanese Atomic Energy Agency, Japan
S. Nizetic, University of Split, Croatia
H. Orlande, Federal University of Rio de Janeiro, Brazil
M. Podowski, Rensselaer Polytechnic Institute, Troy, USA
A. Rusanov, Institute for Mechanical Engineering Problems NAS, Kharkiv, Ukraine
M. R. von Spakovsky, Virginia Polytechnic Institute and State University, Blacksburg, USA
A. Vallati, Sapienza University of Rome, Italy
H.R. Yang, Tsinghua University, Beijing, China