Details
Title
OECD Recommendation’s Draft Concerning Access to Research Data from Public Funding: A ReviewJournal title
Bulletin of the Polish Academy of Sciences Technical SciencesYearbook
2021Volume
69Issue
No. 1Authors
Affiliation
Madeyski, Lech : Faculty of Computer Science and Management, Wroclaw University of Science and Technology, ul. Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland ; Lewowski, Tomasz : Faculty of Computer Science and Management, Wroclaw University of Science and Technology, ul. Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland ; Kitchenham, Barbara : School of Computing and Mathematics, Keele University, Keele, Staffordshire, ST5 5BG, UKKeywords
open data ; open access ; empirical research ; data-driven research ; data scienceDivisions of PAS
Nauki TechniczneCoverage
e135401Bibliography
- OECD, Recommendation of the council concerning access to research data from public funding. [Online]. https://legalinstruments.oecd. org/en/instruments/OECDLEGAL-0347
- D.N. Le, A. Shahbazian, and N. Medvidovic, “An Empirical Study of Architectural Decay in Open-Source Software”, IEEE International Conference on Software Architecture (ICSA), 2018.
- K.R. Sipido, “Irreproducible results in preclinical cardiovascular research: Opportunities in times of need”, Cardiovasc. Res. 115 (3), E34–E36 (2019).
- D.A. Eisner, “Reproducibility of science: Fraud, impact factors and carelessness”, J. Mol. Cell. Cardiol. 114, 364‒368 (2018).
- L. Madeyski and B. Kitchenham, “Would wider adoption of reproducible research be beneficial for Empir. Softw. Eng. research?”, J. Intell. Fuzzy Syst. 32(2), 1509–1521 (2017).
- T. Lewowski and L. Madeyski, “Creating Evolving Project Data Sets in Software Engineering”, Integr. Res. Pract. Softw. Eng. 851, 1–14 (2020), doi: 10.1007/978-3-030-26574-8_1.
- T. Moberly, “Should we be worried about the NHS selling patient data?”, BMJ 368, m113 (2020). doi: 10.1136/bmj.m113.
- C. Aicardi, L. Del Savio, E.S. Dove, F. Lucivero, N. Tempini, and B. Prainsack, “Emerging ethical issues regarding digital health data. On the World Medical Association Draft Declaration on Ethical Considerations Regarding Health Databases and Biobanks”, Croat. Med. J. 57(2), 207–213 (2016), doi: 10.3325/cmj.2016.57.207.
- E. Mahase, “Government hands Amazon free access to NHS information”, BMJ 367, l6901 (2019), doi: 10.1136/bmj.l6901.
- A. Ballantyne, “How should we think about clinical data ownership?”, J. Med. Ethics 46(5), 289–294 (2020).
- B. Kitchenham, L. Madeyski, D. Budgen, J. Keung, P. Brereton, S. Charters, S. Gibbs, and A. Pohthong, “Robust Statistical Methods for Empir. Softw. Eng.”, Empir. Softw. Eng. 22(2), 579–630 (2017).
- Ch. Edwards, “Malevolent machine learning”, Commun. ACM 62(12), 13–15 (2019).
- S. Greengard, “An inability to reproduce”, Commun. ACM 62(9), 13–15 (2019).
- F. Pasquale, “When machine learning is facially invalid”, Commun. ACM 61(8), 25–27 (2018).
- J.P.A. Ioannidis: “The mass production of redundant, misleading, and conflicted systematic reviews and meta-analyses”, Milbank Q. 94, 485–514 (2016).
- J.B. Carlisle, “Data fabrication and other reasons for nonrandom sampling in 5087 randomised, controlled trials in anaesthetic and general medical journals”, Anaesthesia 72(8), 944–952, (2017)
- Ch.H.J. Hartgerink, J.M. Wicherts, and M.A. van Assen, “The value of statistical tools to detect data fabrication”, Res. Ideas Outcomes 2, e8860 (2016).
- Ch.H.J. Hartgerink, J.G. Voelkel, J.M. Wicherts, and Marcel A.L.M. van Assen. “Detection of Data Fabrication Using Statistical Tools”, PsyArXiv, 2019, doi: 10.31234/osf.io/jkws4.
- N.J.L. Brown and J.A.J. Heathers, “The grim test: A simple technique detects numerous anomalies in the reporting of results in psychology”, Soc. Psychol. Personal Sci. 8(4), 363–369 (2017).
- J.A. Heathers, J. Anaya, T. van der Zee, and N. Brown “Recovering data from summary statistics: Sample Parameter Reconstruction via Iterative TEchniques (SPRITE)”, PeerJ Preprints, e26968v1 (2018). doi: 10.7287/peerj.preprints.26968v1.
- S. Al-Marzouki, S. Evans, T. Marshall, and I. Roberts, “Are these data real? Statistical methods for the detection of data fabrication in clinical trials”, BMJ, 331(7511), 267–270 (2005), doi: 10.1136/bmj.331.7511.267.