Details

Title

Interaction of Titanium with Ceramic Molds in the Conditions of Electron Beam Casting Technology

Journal title

Archives of Foundry Engineering

Yearbook

2021

Volume

vo. 21

Numer

No 3

Affiliation

Kaliuzhnyi, P. : Physico-Technological Institute of Metals and Alloys of the National Academy of Sciences of Ukraine, Ukraine ; Voron, M. : Physico-Technological Institute of Metals and Alloys of the National Academy of Sciences of Ukraine, Ukraine ; Mykhnian, O. : Physico-Technological Institute of Metals and Alloys of the National Academy of Sciences of Ukraine, Ukraine ; Tymoshenko, A. : Physico-Technological Institute of Metals and Alloys of the National Academy of Sciences of Ukraine, Ukraine ; Neima, O. : Physico-Technological Institute of Metals and Alloys of the National Academy of Sciences of Ukraine, Ukraine ; Iangol, O. : Physico-Technological Institute of Metals and Alloys of the National Academy of Sciences of Ukraine, Ukraine

Authors

Keywords

Investment casting ; Electron beam casting technology ; Titanium ; Ceramic shell molds

Divisions of PAS

Nauki Techniczne

Coverage

27-32

Publisher

The Katowice Branch of the Polish Academy of Sciences

Bibliography

[1] Agripa, H. & Botef, I. (2019). Modern Production Methods for Titanium Alloys: A Review. In Maciej Motyka (Eds.) Titanium Alloys – Novel Aspects of Their Manufacturing and Processing (pp. 1-14). UK: IntechOpen. DOI: 10.5772/intechopen.81712.
[2] Cviker, U. (1979). Titan i ego splavy. Moskow: Metallurgija, 512. (in Russian).
[3] Il'in, A.A., Kolachev, B.A., Pol'kin, I.S. (2009). Titanovye splavy: Sostav, struktura, svojstva. Spravochnik. Moskva: VILS-MATI, 520. (in Russian).
[4] Banerjee, D. & Williams, J.C. (2013). Perspectives on titanium science and technology. Acta Materialia. 6(3), 844- 879. DOI: 10.1016/j.actamat.2012.10.043.
[5] Saha, R. L., Jacob, K.T. (1986). Casting of titanium and its alloys. Defense science journal. 36(2), 121-141.
[6] Suzuki, K. (2001). An Introduction to the extraction, melting and casting technologies of titanium alloys. Metals and Materials International. 7(6), 587-604. DOI: 10.1007/BF03179258.
[7] Cen, M. J., Liu, Y., Chen, X., Zhang, H.W. & Li, Y.X. (2019). Inclusions in melting process of titanium and titanium alloys. China Foundry. 16(4), 223-231. DOI: 10.1007/s41230-019- 9046-1.
[8] Smalcerz, A., Blacha, L. & Łabaj, J. (2021). Aluminium loss during Ti-Al-X alloy smelting using the VIM technology. Archives of Foundry Engineering. 21(1), 11-17. DOI: 10.24425/afe.2021.136072.
[9] Paton, B.E., Trigub, N.P., Ahonin, S.V., Zhuk, G.V. (2006). Jelektronno-luchevaja plavka titana. Kyiv: Naukova dumka, 248. (in Russian).
[10] Ladohin, S.V. (Ed.). (2007). Jelektronno-luchevaja plavka v litejnom proizvodstve. Kyiv: Stal', 626. (in Russian).
[11] Ladohin, S.V., Levickij, N.I., Lapshuk, T.V., Drozd, E.A., Matviec, E.A. & Voron, M.M. (2015). Primenenie jelektronno-luchevoj plavki dlja poluchenija izdelij medicinskogo naznachenija. Metal and Casting of Ukraine. 4, 7-11. (in Russian).
[12] Voron, M.M., Drozd, E.A., Matviec, E.A. & Suhenko, V.Ju. (2018). Vlijanie temperatury litejnoj formy na strukturu i svojstva otlivok titanovogo splava VT6 jelektronno-luchevoj viplavki. Metal and Casting of Ukraine. 1-2, 40-44. (in Russian).
[13] Voron, M.M., Levytskyi, M.I. & Lapshuk, T.V. (2015). Structure and properties of lytic alloys of Ti-Al-V electronvariable smelting system. Metaloznavstvo ta obrobka metaliv. 2, 29-37. (in Ukrainian).
[14] Levickij, N.I., Ladohin, S.V., Miroshnichenko, V.I., Matviec, E.A. & Lapshuk T.V. (2008). Ispol'zovanie metallicheskih form dlja poluchenija slitkov i otlivok iz titanovyh splavov pri jelektronno-luchevoj garnisazhnoj plavke. Metal and Casting of Ukraine. 7-8, 50-52. (in Russian).
[15] Nikitchenko, M.N., Semukov, A.S., Saulin, D.V. & Jaburov, A.Ju. (2017). Izuchenie termodinamicheskoj vozmozhnosti vzaimodejstvija materialov lit'evoj formy s metallom pri lit'e titanovyh splavov. Vestnik Permskogo nacional'nogo issledovatel'skogo politehnicheskogo universiteta. Himicheskaja tehnologija i biotehnologija. 4, 249-263. (in Russian).
[16] Altindis, M., Hagemann, K., Polaczek, A.B. & Krupp, U. (2011). Investigation of the Effects of Different Types of Investments on the Alpha‐Case Layer of Ti6Al7Nb Castings. Advanced Engineering Materials. 13(4), 319-324. DOI: 10.1002/adem.201000264.
[17] Chamorro, X., Herrero-Dorca, N., Rodríguez, P. P., Andrés, U. & Azpilgain, Z. (2017). α-Case formation in Ti-6Al-4V investment casting using ZrSiO4 and Al2O3 moulds. Journal of Materials Processing Technology. 243, 75-81. DOI: 10.1016/j.jmatprotec.2016.12.007.
[18] Neto, R.L., Duarte, T.P., Alves, J.L. & Barrigana, T.G. (2017). The influence of face coat material on reactivity and fluidity of the Ti6Al4V and TiAl alloys during investment casting. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications. 231(1-2), 38-48. DOI: 10.1177/1464420716681824.
[19] Saulin, D., Poylov, V., Uglev, N. (2020). Effusion Mechanism of α-Layer Formation in Vacuum Casting of Titanium Alloys. IOP Conference Series: Materials Science and Engineering. 969, 012060, 1-12. DOI: 10.1088/1757- 899X/969/1/012060.
[20] Uwanyuze, S., Kanyo, J., Myrick, S. & Schafföner, S. (2021). A review on alpha case formation and modeling of mass transfer during investment casting of titanium alloys. Journal of Alloys and Compounds. 865, June 2021, 158558, 1-19. DOI: 10.1016/j.jallcom.2020.158558
[21] Guilin, Y., Nan, L., Yousheng, L., Yining, W. (2007). The effects of different types of investments on the alpha-case layer of titanium castings. The Journal of prosthetic dentistry. 97(3), 157-164. DOI: 10.1016/j.prosdent.2007.01.005
[22] Kim, M.G., Kim, S.K. & Kim, Y.J. (2002). Effect of mold material and binder on metal-mold interfacial reaction for investment castings of titanium alloys. Materials Transactions. 43(4), 745-750. DOI: 10.2320/ matertrans.43.745.
[23] Sun, S.C., Zhao, E.T., Hu, C., Yu, J.R., An, Y.K. & Guan, R.G. (2020). Characteristics of interfacial reactions between Ti-6Al-4V alloy and ZrO2 ceramic mold. China Foundry. 17(6), 409-415. DOI: 10.1007/s41230-020-0106-3.
[24] Farsani, M.A. & Gholamipour, R. (2020). Silica-Free Zirconia-Based Primary Slurry for Titanium Investment Casting. International Journal of Metalcasting. 14(1), 92-97. DOI: 10.1007/s40962-019-00335-y.
[25] Bańkowski, D. & Spadło, S. (2020). Research on the Influence of Vibratory Machining on Titanium Alloys Properties. Archives of Foundry Engineering. 20(3), 47-52. DOI: 10.24425/afe.2020.133329.

Date

2021.07.19

Type

Article

Identifier

DOI: 10.24425/afe.2021.136109

Source

Archives of Foundry Engineering
×