Details
Title
Longitudinal automatic carrier-landing control law rejecting disturbances and coupling based on adaptive dynamic inversionJournal title
Bulletin of the Polish Academy of Sciences Technical SciencesYearbook
2021Volume
69Issue
No. 1Authors
Affiliation
Wang, Lipeng : College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, 150001, China ; Zhang, Zhi : College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, 150001, China ; Zhu, Qidan : College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, 150001, China ; Wen, Zixia : AVIC Xi’an Flight Automatic Control Research Institute, Xi’an, 710065, ChinaKeywords
carrier-based aircraft ; automatic landing ; nonlinear dynamic inversion ; lateral decoupling ; parameters adaptationDivisions of PAS
Nauki TechniczneCoverage
e136217Bibliography
- M. Ryota and S. Shinji, “Modeling of pilot landing approach control using stochastic switched linear regression model”, J. Aircr. 47(5), 1554–1558 (2010).
- J. Tian, Y. Dai, H. Rong, and T.D. Zhao, “Hybrid safety analysis method based on SVM and RST: An application to carrier landing of aircraft”, Saf. Sci. 80, 56–65 (2015).
- L.P. Wang, Q.D. Zhu, Z. Zhang, and R. Dong. “Modeling pilot behaviors based on discrete–time series during carrier-based aircraft landing”, J. Aircr. 53(6), 1922–1931 (2016).
- J.M. Urnes and R.K. Hess, “Development of the F/A 18A automatic carrier landing system”, J. Guid. 8(3), 289-295 (1985).
- Z.Y. Guan, Y.P. Ma, and Z.W. Zheng, “Prescribed performance control for automatic carrier landing with disturbance”, Nonlinear Dyn. 94(2), 1335–1349 (2018).
- Z.Y. Zhen, S.Y. Jiang, and K. Ma, “Automatic carrier landing control for unmanned aerial vehicles based on preview control and particle filtering”, Aerosp. Sci. Technol. 81, 99–107 (2018).
- Z.Y. Zhen, S.Y. Jiang, and J. Jiang, “Preview control and particle filtering for automatic carrier landing”, IEEE Trans. Aerosp. Electron. Syst. 54(6), 2662–2674 (2018).
- R. Lungu and M. Lungu, “Design of automatic landing systems using the H-inf control and the dynamic inversion”, J. Dyn. Syst. Meas. Control- Trans. ASME. 138(2), 1–5 (2016).
- R. Lungu and M. Lungu, “Automatic Landing system using neural networks and radio-technical subsystems”, Chin. J. Aeronaut. 30(1), 399–411 (2017).
- M. Lungu and R. Lungu, “Automatic control of aircraft lateraldirectional motion during landing using neural networks and radio-technical subsystems”, Neurocomputing. 171, 471–481 (2016).
- Q. Bian, B. Nener, T. Li, and X.M. Wang, “Multimodal control parameter optimization for aircraft longitudinal automatic landing via the hybrid particle swarm-BFGS algorithm”, Proc. Inst. Mech. Eng. Part G-J. Aerosp. Eng. 233(12), 4482–4491 (2019).
- F.Y. Zheng, Z.Y. Zhen, and H.J. Gong, “Observer-based backstepping longitudinal control for carrier-based UAV with actuator faults”, J. Syst. Eng. Electron. 28(2), 322–337 (2017).
- Z.Y. Zhen, C.J. Yu, and S.Y. Jiang, “Adaptive super-twisting control for automatic carrier landing of aircraft”, IEEE Trans. Aerosp. Electron. Syst. 56(2), 987–994 (2020).
- Z.Y. Zhen, G. Tao, and C.J. Yu, “A multivariable adaptive control scheme for automatic carrier landing of UAV”, Aerosp. Sci. Technol. 92, 714–721 (2019).
- L.P. Wang, Z. Zhang, Q.D. Zhu, and R. Dong, “Longitudinal automatic carrier landing system guidance law using model predictive control with an additional landing risk term”, Proc. Inst. Mech. Eng. Part G-J. Aerosp. Eng. 233(3), 1–17 (2019).
- L.P. Wang, Z. Zhang, and Q.D. Zhu, “Automatic Flight Control Design Considering Objective and Subjective Risks during Carrier Landing”, Proc. Inst. Mech. Eng. Part I-J Syst Control Eng. 234(4), 446–461 (2020).
- L.P. Wang, Z. Zhang, Q.D. Zhu, X.W. Jiang, “Lateral autonomous carrier-landing control with high-dimension landing risks consideration”, Aircr. Eng. Aerosp. Technol. 92(6), 837– 850 (2020).
- T. Woodbury and J. Valasek, “Synthesis and flight test of an automatic landing controller using quantitative feedback theory”, J. Guid. Control Dyn. 39(9), 1994–2010 (2016).
- B. Xu, D.W. Wang, Y.M. Zhang, and Z.K. Shi, “DOB-based neural control of flexible hypersonic flight vehicle considering wind effects”, IEEE Trans. Ind. Electron. 64(11), 8676–8685 (2017).
- D. Gawel, M. Nowak, H. Hausa, and R. Roszak, “New biomimetic approach to the aircraft wing structural design based on aeroelastic analysis”, Bull. Pol. Ac.: Tech. 65(5), 741–750 (2017).
- J.N. Li and H.B. Duan, “Simplified brain storm optimization approach to control parameter optimization in F/A 18 automatic carrier landing system”, Aerosp. Sci. Technol. 42, 187–195 (2015).
- R. Dou and H.B. Duan, “Levy flight based pigeon-inspired optimization for control parameters optimization in automatic carrier landing system”, Aerosp. Sci. Technol. 61, 11–20 (2017).
- K. Lu and C.S. Liu, “A L-1 adaptive control scheme for UAV carrier landing using nonlinear dynamic inversion”, Int. J. Aerosp. Eng. 1–9 (2019).
- M. Brodecki and K. Subbarao. Autonomous formation flight control system using in-flight sweet-spot estimation. J. Guid. Control Dyn. 38(6), 1083–1096 (2015).
- H. Bouadi, F.M. Camino, and D. Choukroun, “Space–Indexed Control for Aircraft Vertical Guidance with Time Constraint”, J. Guid. Control Dyn. 37(4), 1103–1113 (2014).
- P.K. Menon, S.S. Vaddi, and P. Sengupta, “Robust landingguidance law for impaired aircraft”, J. Guid. Control Dyn. 35(6), 1865−1877 (2012).
- W.H. Chen, “Nonlinear Disturbance observer-enhanced dynamic inversion control of missiles”, J. Guid. Control Dyn. 26(1), 161–166 (2003).
- I. Hameduddin and A.H. Bajodah, “Nonlinear generalised dynamic inversion for aircraft manoeuvring control”, Int. J. Control. 85(4), 437–450 (2012).
- R. Lungu and M. Lungu, “Design of automatic landing systems using the H-inf control and the dynamic inversion”, J. Dyn. Syst. Meas. Control- Trans. ASME. 138(2), 1–5 (2016).
- M. Lungu and R. Lungu, “Landing auto-pilots for aircraft motion in longitudinal plane using adaptive control laws based on neural networks and dynamic inversion”, Asian J. Control. 19(1), 302–315 (2017).
- R. Lungu and M. Lungu, “Automatic control of aircraft in lateral-directional plane during landing”, Asian J. Control. 18(2), 433–446 (2016).
- A. Chakraborty, P. Seiler, and G. J. Balasz, “Applications of linear and nonlinear robustness analysis techniques to the F/A-18 flight control laws”, AIAA Guidance, Navigation, and Control conference. Chicago, USA, 2009, pp.10–13.
- A. Chakraborty, P. Seiler, and G. J. Balas, “Susceptibility of F/A 18 flight controllers to the falling-leaf mode: nonlinear analysis”, J. Guid. Control Dyn. 34(1), 57–72 (2011).
- J.M. Urnes, and R.K. Hess, “Development of the F/A-18A Automatic Carrier Landing System”, J. Guid. 8(3), 289–295 (1985).