Details

Title

Longitudinal automatic carrier-landing control law rejecting disturbances and coupling based on adaptive dynamic inversion

Journal title

Bulletin of the Polish Academy of Sciences Technical Sciences

Yearbook

2021

Volume

69

Issue

No. 1

Affiliation

Wang, Lipeng : College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, 150001, China ; Zhang, Zhi : College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, 150001, China ; Zhu, Qidan : College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, 150001, China ; Wen, Zixia : AVIC Xi’an Flight Automatic Control Research Institute, Xi’an, 710065, China

Authors

Keywords

carrier-based aircraft ; automatic landing ; nonlinear dynamic inversion ; lateral decoupling ; parameters adaptation

Divisions of PAS

Nauki Techniczne

Coverage

e136217

Bibliography

  1.  M. Ryota and S. Shinji, “Modeling of pilot landing approach control using stochastic switched linear regression model”, J. Aircr. 47(5), 1554–1558 (2010).
  2.  J. Tian, Y. Dai, H. Rong, and T.D. Zhao, “Hybrid safety analysis method based on SVM and RST: An application to carrier landing of aircraft”, Saf. Sci. 80, 56–65 (2015).
  3.  L.P. Wang, Q.D. Zhu, Z. Zhang, and R. Dong. “Modeling pilot behaviors based on discrete–time series during carrier-based aircraft landing”, J. Aircr. 53(6), 1922–1931 (2016).
  4.  J.M. Urnes and R.K. Hess, “Development of the F/A 18A automatic carrier landing system”, J. Guid. 8(3), 289-295 (1985).
  5.  Z.Y. Guan, Y.P. Ma, and Z.W. Zheng, “Prescribed performance control for automatic carrier landing with disturbance”, Nonlinear Dyn. 94(2), 1335–1349 (2018).
  6.  Z.Y. Zhen, S.Y. Jiang, and K. Ma, “Automatic carrier landing control for unmanned aerial vehicles based on preview control and particle filtering”, Aerosp. Sci. Technol. 81, 99–107 (2018).
  7.  Z.Y. Zhen, S.Y. Jiang, and J. Jiang, “Preview control and particle filtering for automatic carrier landing”, IEEE Trans. Aerosp. Electron. Syst. 54(6), 2662–2674 (2018).
  8.  R. Lungu and M. Lungu, “Design of automatic landing systems using the H-inf control and the dynamic inversion”, J. Dyn. Syst. Meas. Control- Trans. ASME. 138(2), 1–5 (2016).
  9.  R. Lungu and M. Lungu, “Automatic Landing system using neural networks and radio-technical subsystems”, Chin. J. Aeronaut. 30(1), 399–411 (2017).
  10.  M. Lungu and R. Lungu, “Automatic control of aircraft lateraldirectional motion during landing using neural networks and radio-technical subsystems”, Neurocomputing. 171, 471–481 (2016).
  11.  Q. Bian, B. Nener, T. Li, and X.M. Wang, “Multimodal control parameter optimization for aircraft longitudinal automatic landing via the hybrid particle swarm-BFGS algorithm”, Proc. Inst. Mech. Eng. Part G-J. Aerosp. Eng. 233(12), 4482–4491 (2019).
  12.  F.Y. Zheng, Z.Y. Zhen, and H.J. Gong, “Observer-based backstepping longitudinal control for carrier-based UAV with actuator faults”, J. Syst. Eng. Electron. 28(2), 322–337 (2017).
  13.  Z.Y. Zhen, C.J. Yu, and S.Y. Jiang, “Adaptive super-twisting control for automatic carrier landing of aircraft”, IEEE Trans. Aerosp. Electron. Syst. 56(2), 987–994 (2020).
  14.  Z.Y. Zhen, G. Tao, and C.J. Yu, “A multivariable adaptive control scheme for automatic carrier landing of UAV”, Aerosp. Sci. Technol. 92, 714–721 (2019).
  15.  L.P. Wang, Z. Zhang, Q.D. Zhu, and R. Dong, “Longitudinal automatic carrier landing system guidance law using model predictive control with an additional landing risk term”, Proc. Inst. Mech. Eng. Part G-J. Aerosp. Eng. 233(3), 1–17 (2019).
  16.  L.P. Wang, Z. Zhang, and Q.D. Zhu, “Automatic Flight Control Design Considering Objective and Subjective Risks during Carrier Landing”, Proc. Inst. Mech. Eng. Part I-J Syst Control Eng. 234(4), 446–461 (2020).
  17.  L.P. Wang, Z. Zhang, Q.D. Zhu, X.W. Jiang, “Lateral autonomous carrier-landing control with high-dimension landing risks consideration”, Aircr. Eng. Aerosp. Technol. 92(6), 837– 850 (2020).
  18.  T. Woodbury and J. Valasek, “Synthesis and flight test of an automatic landing controller using quantitative feedback theory”, J. Guid. Control Dyn. 39(9), 1994–2010 (2016).
  19.  B. Xu, D.W. Wang, Y.M. Zhang, and Z.K. Shi, “DOB-based neural control of flexible hypersonic flight vehicle considering wind effects”, IEEE Trans. Ind. Electron. 64(11), 8676–8685 (2017).
  20.  D. Gawel, M. Nowak, H. Hausa, and R. Roszak, “New biomimetic approach to the aircraft wing structural design based on aeroelastic analysis”, Bull. Pol. Ac.: Tech. 65(5), 741–750 (2017).
  21.  J.N. Li and H.B. Duan, “Simplified brain storm optimization approach to control parameter optimization in F/A 18 automatic carrier landing system”, Aerosp. Sci. Technol. 42, 187–195 (2015).
  22.  R. Dou and H.B. Duan, “Levy flight based pigeon-inspired optimization for control parameters optimization in automatic carrier landing system”, Aerosp. Sci. Technol. 61, 11–20 (2017).
  23.  K. Lu and C.S. Liu, “A L-1 adaptive control scheme for UAV carrier landing using nonlinear dynamic inversion”, Int. J. Aerosp. Eng. 1–9 (2019).
  24.  M. Brodecki and K. Subbarao. Autonomous formation flight control system using in-flight sweet-spot estimation. J. Guid. Control Dyn. 38(6), 1083–1096 (2015).
  25.  H. Bouadi, F.M. Camino, and D. Choukroun, “Space–Indexed Control for Aircraft Vertical Guidance with Time Constraint”, J. Guid. Control Dyn. 37(4), 1103–1113 (2014).
  26.  P.K. Menon, S.S. Vaddi, and P. Sengupta, “Robust landingguidance law for impaired aircraft”, J. Guid. Control Dyn. 35(6), 1865−1877 (2012).
  27.  W.H. Chen, “Nonlinear Disturbance observer-enhanced dynamic inversion control of missiles”, J. Guid. Control Dyn. 26(1), 161–166 (2003).
  28.  I. Hameduddin and A.H. Bajodah, “Nonlinear generalised dynamic inversion for aircraft manoeuvring control”, Int. J. Control. 85(4), 437–450 (2012).
  29.  R. Lungu and M. Lungu, “Design of automatic landing systems using the H-inf control and the dynamic inversion”, J. Dyn. Syst. Meas. Control- Trans. ASME. 138(2), 1–5 (2016).
  30.  M. Lungu and R. Lungu, “Landing auto-pilots for aircraft motion in longitudinal plane using adaptive control laws based on neural networks and dynamic inversion”, Asian J. Control. 19(1), 302–315 (2017).
  31.  R. Lungu and M. Lungu, “Automatic control of aircraft in lateral-directional plane during landing”, Asian J. Control. 18(2), 433–446 (2016).
  32.  A. Chakraborty, P. Seiler, and G. J. Balasz, “Applications of linear and nonlinear robustness analysis techniques to the F/A-18 flight control laws”, AIAA Guidance, Navigation, and Control conference. Chicago, USA, 2009, pp.10–13.
  33.  A. Chakraborty, P. Seiler, and G. J. Balas, “Susceptibility of F/A 18 flight controllers to the falling-leaf mode: nonlinear analysis”, J. Guid. Control Dyn. 34(1), 57–72 (2011).
  34.  J.M. Urnes, and R.K. Hess, “Development of the F/A-18A Automatic Carrier Landing System”, J. Guid. 8(3), 289–295 (1985).

Date

10.02.21

Type

Article

Identifier

DOI: 10.24425/bpasts.2020.136217

Source

Bulletin of the Polish Academy of Sciences: Technical Sciences; 2021; 69; No. 1; e136217
×