Szczegóły
Tytuł artykułu
Reduction of Thermal Conductivity Through Complex Microstructure by Dispersion of Carbon Nanofiber in p-Type Bi0.5Sb1.5Te3 AlloysTytuł czasopisma
Archives of Metallurgy and MaterialsRocznik
2021Wolumin
vol. 66Numer
No 3Autorzy
Afiliacje
Sharief, P. : Kongju National University, Division of Advanced Materials Engineering & Institute for Rare Metals, Cheonan, 331-717, Republic of Korea ; Madavali, B. : Kongju National University, Division of Advanced Materials Engineering & Institute for Rare Metals, Cheonan, 331-717, Republic of Korea ; Sohn, Y. : Chungnam National University, Department of Materials Science & Engineering, Daejeon, 34134, Republic of Korea ; Han, J.H. : Chungnam National University, Department of Materials Science & Engineering, Daejeon, 34134, Republic of Korea ; Song, G. : Kongju National University, Division of Advanced Materials Engineering & Institute for Rare Metals, Cheonan, 331-717, Republic of Korea ; Song, S.H. : Kongju National University, Division of Advanced Materials Engineering & Institute for Rare Metals, Cheonan, 331-717, Republic of Korea ; Song, S.J. : Kongju National University, Division of Advanced Materials Engineering & Institute for Rare Metals, Cheonan, 331-717, Republic of KoreaSłowa kluczowe
Bismuth telluride ; Carbon nano fiber ; Grain size ; Thermal conductivity ; ZTWydział PAN
Nauki TechniczneZakres
803-808Wydawca
Institute of Metallurgy and Materials Science of Polish Academy of Sciences ; Committee of Materials Engineering and Metallurgy of Polish Academy of SciencesBibliografia
[1] J.R. Szczech, J.M. Higgins, S. Jin, Enhancement of the thermoelectric properties in nanoscale and nanostructured materials, J. Mater. Chem. 21 (12), 4037-4055 (2011).[2] Y. Pei, X. Shi, A. Lalonde, H. Wang, L. Chen, G.J. Synder, Convergence of electronic bands for high performance bulk thermoelectrics, Nature 473, 66-69 (2011).
[3] R . Deng, X. Su, S. Hao, Z. Zheng, M. Zhang, H. Xoe, W. Liu, Y. Yan, C. Wolverton, C. Uher, M.G. Kanatzidis, X. Tang, High thermoelectric performance in Bi0.46Sb1.54Te3 nanostructured with ZnTe, Energy Environ. Sci. 11, 1520-1535 (2018).
[4] H . Mamur, M.R.A Bhuiyan, F. Korkmaz, M. Nil, A review on bismuth telluride (Bi2Te3) nanostructure for thermoelectric applications, Renew. Sust. Energ. Rev. 82, 4159-4169 (2018).
[5] I . Chowdhury, R. Prasher, K. Lofgreen, G. Chrysler, S. Narasimhan, R. Mahajan, R. Venkatasubramanian, On-chip cooling by superlattice-based thin-film thermoelectrics, Nat. Nanotechnol. 4 (4), 235-238 (2009).
[6] Z. Xiao, X. Zhu, On-Chip Sensing of Thermoelectric Thin Film’s Merit, Sensors 15 (7), 17232-17240 (2015).
[7] X. Hu, X. Fan, B. Feng, D. Kong, P. Liu, R. Li, Y. Zhang, G. Li, Y. Li, Microstructural refinement, and performance improvement of cast n-type Bi2Te2.79Se0.21 ingot by equal channel angular extrusion, Met. Mater. Int. (2020). DOI: https://doi.org/10.1007/s12540-020-00699-5
[8] M. Sabarinathan, M. Omprakash, S. Harish, M. Navaneethan, J. Archana, S. Ponnusamy, Y. Hayakawa, Enhancement of power factor by energy filtering effect in hierarchical BiSbTe3 nanostructures for thermoelectric applications, Appl. Surf. Sci. 418, 246-251 (2017).
[9] B . Madavali, H.S. Kim, K.H. Lee, S.J. Hong, Enhanced Seebeck coefficient by energy filtering in Bi-Sb-Te based composites with dispersed Y2O3 nanoparticles, Intermetallics 82, 68-75 (2017).
[10] J. Hu, B. Liu, H. Subramanyan, B. Li, J. Zhou, J. Liu, Enhanced thermoelectric properties through minority carriers blocking in nanocomposites, J. Appl. Phys. 126 (9), 095107 (2019).
[11] S. Foster, N. Neophytou, Effectiveness of nano inclusions for reducing bipolar effects in thermoelectric materials, Comput. Mater. Sci. 164, 91-98 (2019).
[12] L.D. Hicks, T.C. Harman, X. Sun, M.S. Dresselhaus, Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit, Phys. Rev. B 53 (16), R10493-R10496 (1996).
[13] I .V. Zaporotskova, N.P. Boroznina, Y.N. Parkhomenko, L.V. Kozhitov, Carbon nanotubes: Sensor properties, A review, Mod. Electron. Mater. 2 (4), 95-105 (2016).
[14] P.A. Tran, L. Zhang, T.J. Webster, Carbon nanofibers and carbon nanotubes in regenerative medicine, Adv. Drug Deliv. Rev. 61 (12), 1097-1114 (2009).
[15] M. Gurbuz, T. Mutuk, P. Uyan, Mechanical, Wear and Thermal behaviors of graphene reinforced titanium composites, Met. Mater. Int. (2020). DOI: https://doi.org/10.1007/s12540-020-00673-1
[16] D.W. Jung, J.H. Jeong, B.C. Cha, J.B. Kim, B.S. Kong, J.K. Lee, E.S. Oh, Effects of ball-milled graphite in the synthesis of SnO2/graphite as an active material in lithium-ion batteries, Met. Mater. Int. 17 (6), 1021-1026 (2011).
[17] A comparison of Carbon Nanotubes and Carbon Nanofibers, Pyrograf products, Inc, An affiliate of Applied surface sciences, Inc.
[18] K.M. Nam, K. Mees, H.S. Park, M. Willert-Porada, C.S. Lee, Electrophoretic Deposition for the Growth of Carbon nanofibers on Ni-Cu/C-fiber Textiles, Bull. Korean Chem. Soc. 35 (8), 2431- 2437 (2014).
[19] S .J. Jung, S.Y. Park, B.K. Kim, B. Kwon, S.K. Kim, H.H. Park, S.H. Baek, Hardening of Bi-Te based alloys by dispersing B4C nanoparticles, Acta Mater. 97, 68-74 (2015).
[20] C. Marquez, N. Rodriguez, R. Ruiz, F. Gamiz, Electrical characterization and conductivity optimization of laser reduced graphene oxide on insulator using point-contact methods, RSC Adv. 6 (52), 46231-46237 (2016).
[21] P. Sharief, B. Madavali, J.M. Koo, H.J. Kim, S. Hong, S.J. Hong, Effect of milling time parameter on the microstructure and the thermoelectric properties of N-type Bi2Te2.7Se0.3 alloys, Arch. Metall. Mater. 2, 585-590 (2019).
[22] P . Slobodian, P. Riha, R. Olejnik, M. Kovar, P. Svoboda, Thermoelectric properties of carbon nanotube and nanofiber based ethylene-octene copolymer composites for thermoelectric devices, J. Nanomater 2013, 1-7 (2013).
[23] Q. Lognoné, F. Gascoin, On the effect of carbon nanotubes on the thermoelectric properties of n-Bi2Te2. 4Se0. 6 made by mechanical alloying, J. Alloys Compd. 635, 107-111 (2015).
[24] B. Feng, G. Li, X. Hu, P. Liu, R. Li, Y. Zhang, Z. He, Improvement of thermoelectric and mechanical properties of BiCuSeO-based materials by SiC nanodispersion, J. Alloys Compd. 818, 152899 (2020).