Details

Title

Measurement of Compound Sound Sources with Adaptive Spatial Radiation for Low-Frequency Active Noise Control Applications

Journal title

Archives of Acoustics

Yearbook

2021

Volume

vol. 46

Issue

No 2

Affiliation

Giouvanakis, Marios : Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki ; Sevastiadis, Christos : Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki ; Papanikolaou, George : Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki

Authors

Keywords

Low-Bl loudspeakers ; compound sound sources ; adaptive spatial radiation ; active low-frequency noise control

Divisions of PAS

Nauki Techniczne

Coverage

205-212

Publisher

Polish Academy of Sciences, Institute of Fundamental Technological Research, Committee on Acoustics

Bibliography

1. Aarts R.M. (2005), High-efficiency low-Bl loudspeakers, Journal of Audio Engineering Society, 53(7/8): 579–592.
2. AES56-2008 (2014), Standard on acoustics – Sound source modeling – Loudspeaker polar radiation measurements, Audio Engineering Society, New York.
3. Beranek L.L. (1996), Acoustics, Acoustical Society of America, New York, USA, pp. 91–101.
4. Bolton J.S., Gardner B.K., Beauvilain T.A. (1995), Sound cancellation by the use of secondary multipoles, The Journal of Acoustical Society of America, 98(4): 2343–2362, doi: 10.1121/1.414400.
5. Chan Y.J., Huang L., Lam J. (2013), Effects of secondary loudspeaker properties on broadband feedforward active duct noise control, The Journal of the Acoustical Society of America, 134(1): 257–263, doi: 10.1121/1.4808079.
6. Chen W., Pu H., Qiu X. (2010), A compound secondary source for active noise radiation control, Applied Acoustics, 71(2): 101–106, doi: 10.1016/ j.apacoust.2009.08.008.
7. Concha-Barrientos M., Campbell-Lendrum D., Steenland K. (2004), Occupational noise: Assessing the burden of disease from work-related hearing impairment at national and local levels, WHO Environmental Burden of Disease Series, No. 9, WHO, Geneva.
8. Czyzewski A., Kotus J., Kostek B. (2007), Determining the noise impact on hearing using psychoacoustical noise dosimeter, Archives of Acoustics, 32(2): 215–229.
9. Dickason V. (2006), Loudspeaker Design Cookbook, 7th ed., Peterborough, USA: Audio Amateur Press.
10. Giouvanakis M., Kasidakis K., Sevastiadis C., Papanikolaou G. (2019), Design and construction of loudspeakers with low-Bl drivers for low-frequency active noise control applications, Proceedings of the 23rd ICA, pp. 6921–6928, Aachen, Germany, doi: 10.18154/ RWTH-CONV-238865.
11. Giouvanakis M., Sevastiadis C., Papanikolaou G. (2019), Low-frequency noise attenuation in a closed space using adaptive directivity control sources of a quadrupole type, Archives of Acoustics, 44(1): 71– 78, doi: 10.24425/aoa.2019.126353.
12. Giouvanakis M., Sevastiadis C., Vrysis L., Papanikolaou G. (2018), Control of resonant lowfrequency noise simulations in different areas of small spaces using compound sources, Proceedings of Euronoise Conference, pp. 935–941, Crete, Greece.
13. Hill A.J., Hawksford M.O.J. (2010), Chameleon subwoofer arrays – Generalized theory of vectored sources in a closed acoustic space, 128th Audio Engineering Society Convention Convention, paper No. 8074, London.
14. Istvan L.V., Beranek L.L. (2006), Noise and vibration control engineering-Principles and applications, 2nd ed., John Wiley & Sons, New Jersey, USA; pp. 45–150.
15. Keele D.B. (1974), Low-frequency loudspeaker assessment by nearfield sound-pressure measurement, Journal of Audio Engineering Society, 22(3): 154–162.
16. Kido K. (1991), The technologies for active noise control, Journal of Acoustic Society of Japan (E), 12(6): 245–253, doi: 10.1250/ast.12.245.
17. Kotus J., Kostek B. (2008), The noise-induced harmful effect assessment based on the properties of the human hearing system, Archives of Acoustics, 33(4): 435–440.
18. Młynski R., Kozłowski E., Adamczyk J. (2014), Assessment of impulse noise hazard and the use of hearing protection devices in workplaces where forging hammers are used, Archives of Acoustics, 39(1): 73–79, doi: 10.2478/aoa-2014-0008.
19. Olson H.F. (1973), Gradient loudspeakers, Journal of Audio Engineering Society, 21(2): 86–93.
20. Pawlaczyk-Łuszczynska M., Dudarewicz A., Waszkowska M., Szymczak W., Kameduła M., Sliwinska-Kowalska M. (2004), Does low frequency noise affect human mental performance?, Archives of Acoustics, 29(2): 205–218.
21. Persson W.K. (2011), Noise and health – effects of low frequency noise and vibrations: environmental and occupational perspectives, Encyclopedia of Environmental Health, 4: 240–253.
22. Qiu X., Hansen C.H. (2000), Secondary acoustic source types for active noise control in free field: monopoles or multipoles?, Journal of Sound and Vibration, 232(5): 1005–1009, doi: 10.1006/jsvi.1999.2702.
23. Russell D.A., Titlow J.P., Bemmen Y.J. (1999), Acoustic monopoles, dipoles, and quadrupoles: An experiment revisited, American Journal of Physics, 67(8): 660–664, doi: 10.1119/1.19349.
24. Shehap A.M., Shawky H.A., El-Basheer T.M. (2016), Study and assessment of low frequency noise in occupational settings, Archives of Acoustics, 41(1): 151–160, doi: 10.1515/aoa-2016-0015.
25. Small R.H. (1972), Simplified Loudspeaker Measurements at Low Frequencies, Journal of Audio Engineering Society, 20(1): 28–33.
26. Small R.H. (1973), Vented-box loudspeaker systems. Part 1: Small-signal analysis, Journal of Audio Engineering Society, 21(5): 363–372.
27. Wang S., Sun H., Pan J., Qiu X. (2018), Near-field error sensing for active directivity control of radiated sound, The Journal of the Acoustical Society of America, 144(2): 598–607, doi: 10.1121/1.5049145.
28. Wang S., Yu J., Qiu X., Pawelczyk M., Shaid A., Wang L. (2017), Active sound radiation control with secondary sources at the edge of the opening, Applied Acoustics, 117(Part A): 173–179, doi: 10.1016/ j.apacoust.2016.10.027.
29. Wrona S., Pawełczyk M. (2016), Feedforward control of a light-weight device casing for active noise reduction, Archives of Acoustics, 41(3): 499–505, doi: 10.1515/aoa-2016-0048.
30. Zagubien A., Wolniewicz K. (2020), The assessment of infrasound and low frequency noise impact on the results of learning in primary school – case study, Archives of Acoustics, 45(1): 93–102, doi: 10.24425/aoa.2020.132485.

Date

2021.06.17

Type

Article

Identifier

DOI: 10.24425/aoa.2021.136576

Source

Archives of Acoustics; 2021; vol. 46; No 2; 205-212
×