Details

Title

Double enveloping worm gear modelling using CAD environment

Journal title

Bulletin of the Polish Academy of Sciences Technical Sciences

Yearbook

2021

Volume

69

Issue

2

Affiliation

Połowniak, Piotr : Rzeszow University of Technology, The Faculty of Mechanical Engineering and Aeronautics, al. Powstańców Warszawy 12, 35-959 Rzeszow, Poland ; Sobolak, Mariusz : Rzeszow University of Technology, The Faculty of Mechanical Engineering and Aeronautics, al. Powstańców Warszawy 12, 35-959 Rzeszow, Poland ; Marciniec, Adam : Rzeszow University of Technology, The Faculty of Mechanical Engineering and Aeronautics, al. Powstańców Warszawy 12, 35-959 Rzeszow, Poland

Authors

Keywords

globoid surface ; CAD modelling ; double enveloping worm gear ; globoid helix ; hybrid modelling ; tooth trace modification

Divisions of PAS

Nauki Techniczne

Coverage

e136736

Bibliography

  1.  I. Dudas, The theory and practice of worm gear drives, Penton Press, London, 2000.
  2.  W.P. Crosher, Design and Application of the Worm Gear, ASME Press, New York, 2002.
  3.  F.L. Litvin, Development of Gear Technology and Theory of Gearing, NASA, Levis Research Center, 1999.
  4.  F.L. Litvin and A. Fuentes, Gear Geometry and Applied Theory, Cambridge University Press, 2004.
  5.  L. Dudás, “New technology for manufacturing quasi-globoid worm gearings”, Mater. Sci. Eng. 448, 012035 (2018).
  6.  Y. Chen, Y. Chen, W. Luo, and G. Zhang, “Development and Classification of Worm Drive”, The 14th IFToMMWorld Congress in Taiwan, 2015.
  7.  V. Simon, “Double Enveloping Worm Gear Drive with Smooth Gear Tooth Surface”, in Proc. Int. Conf. on Gearing, Zhengzhou, China, 1988, pp. 191‒194.
  8.  V. Simon, “A New Type of Ground Double Enveloping Worm Gear Drive”, in Proc. ASME 5th Int. Power Transm. and Gearing Conf., Chicago, 1989, pp.281‒288.
  9.  V. Simon, “Load Distribution in Double Enveloping Worm Gears”, J. Mech. Des. 115, 496‒501 (1993).
  10.  V. Simon, “Characteristics of a Modified Double Enveloping Worm Gear Drive”, in Proc. 6th Int. Power Transm. and Gearing Conf., Scottsdale, 1992, pp. 73‒79.
  11.  Y. Zhao and Y. Zhang, “Novel methods for curvature analysis and their application to TA worm”, Mech. Mach. Theory. 97, 155‒170 (2016).
  12.  Y. Zhao and Y. Zhang, “Computing method for induced curvature parameters based on normal vector of instantaneous contact line and its application to Hindley worm pair”. Adv. Mech. Eng. 9, 168781401772188 (2017).
  13.  Y. Zhao, “Meshing analysis for TA worm”, Mech. Mach. Sci. 43, 13–20, (2016)
  14.  Ch. Huai and Y. Zhao, “Variable height modification of TA worm drive”, in Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 233, 095440621875726 (2018).
  15.  Y. Zhao, “Edge Tooth Addendum Thickness of Hindley Worm”, Mech. Mach. Sci. 46, 117–124 (2016).
  16.  Y. Zhao, Ch. Huai, and Y. Zhang, “Compound Modification of Globoidal Worm Drive with Variable Parameters”, Appl. Math. Model. 50, 17–38 (2017).
  17.  P. Polowniak and M. Sobolak, “Mathematical description of tooth flank surface of globoidal worm gear with straight axial tooth profile”, Open Eng. 7, 407–415 (2017).
  18.  Q. Wen, H. Xu, and W. Tang, “The Research and Analysis of the New Modification Theory of Toroidal Worm-Gearing”, Int. Conf. Syst. Sci., Eng. Des. Manuf. Informatiz. (ICSEM) 11, 59–62 (2010).
  19.  Y. Chen, W. Luo, Y. Chen, and G. Zhang, “Study on the spur involute gear meshing with planar enveloping hourglass worm based on local conjugate”, Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 232, 095440621770821 (2017).
  20.  F. He, Z. Shi, and B. Yu, “Effects of tooth surface modification on planar double-enveloping hourglass worm gear drives”, J. Adv. Mech. Des. Syst. Manuf. 12, JAMDSM0040-JAMDSM0040, (2018).
  21.  W. Xu, D. Qin, and W. Shi, “Direct digital design and simulation of meshing in worm-gear drive”, Chin. J. Mech. Eng. 19, 428–433 (2006).
  22.  L.V. Mohan and M.S. Shunmugam, “Geometrical aspects of double enveloping worm gear drive”, Mech. Mach. Theory. 44, 2053–2065 (2009).
  23.  K.Y. Chen and Ch.B. Tsay, “Mathematical model and worm wheel tooth working surfaces of the ZN-type hourglass worm gear set”, Mech. Mach. Theory. 44, 1701–1712 (2009).
  24.  Ch. Rui, H. Li, J. Yang, W. Wei, “Research on a method for designing land surfaces of a dual-cone double enveloping hourglass worm wheel hob”, J. Adv. Mech. Des. Syst. Manuf. 12, JAMDSM0090-JAMDSM0090 (2018).
  25.  J. Yang, H. Li, Ch. Rui, W. Wei, and X. Dong, “A Method to Generate the Spiral Flutes of an Hourglass Worm Gear Hob”, J. Mech. Des. 140, 063301 (2018).
  26.  Ch. Rui, H. Li, J. Yang, W. Wei, and X. Dong, “A design and generating method for grinding relief surfaces of a dual-cone double enveloping hourglass worm gear hob”, J. Mech. Des. 140, 123301‒1 (2018).
  27.  Z. Lei, Q. Bi, Y. Wang, and H. Ding, “Five-Axis Flank Milling Method of Plane Double Enveloping Hourglass Worm”, Adv. Mat. Res. 314–316, 1523–1532 (2011).
  28.  S. Lagutin, E. Gudov, and B. Fedotov, “Manufacturing and load rating of modified globoid gears”, Balkan J. Mech. Transm. (BJMT). 1, 45–53 (2011).
  29.  Sutyagin, L. Mal’ko, and I. Trifanov, “More efficient machining of globoid worm gears”, Rus. Eng. Res. 35, 623–627 (2015).
  30.  L. Dong, J. Wang, P. Liu, W. Wei, and H. Li, “An NC rough turning method of an enveloping toroidal worm”, Prod. Eng. 6, 129–135 (2012).
  31.  Y. Sun, H. Zheng, Q. Bi, and S. Wang, “Method of accurate grinding for single enveloping TI worm”, Sci. China-technol. Sci. 48, 430–440 (2005).
  32.  Z. Liu, H. Lu, G. Yu, and S. Wang, “A novel CNC machining method for enveloping surface”, Int. J. Adv. Manuf. Technol. 85, 779–790 (2015).
  33.  Z. Liu, H. Lu, S. Wang, and G. Yu, “Digitization modelling and CNC machining for cone-generated double-enveloping worm drive”, Int. J. Adv. Manuf. Technol. 95, 3393–3412 (2018).
  34.  H. Lu, Z. Liu, and S. Wang, “Digitization modelling and CNC machining for enveloping surface parts”, Int. J. Adv. Manuf. Technol. 73, 209–227 (2014).
  35.  A.L. Kheyfets, “Geometrically Accurate Computer 3D Models of Gear Drives and Hob Cutters”, Procedia Eng. 150, 1098–1106 (2016).
  36.  A.L. Kheyfets, “Programming While Construction of Engineering 3D Models of Complex Geometry”, Mat. Sci. Eng. 262, 012111 (2017).
  37.  M. Sobolak, Analysis and synthesis of mating gear tooth surface by discrete methods, Rzeszow University of Technol. Publ., Rzeszow, 2006, [in Polish].
  38.  A.J. Muminovic, M. Colic, E. Mesic, and I. Saric, “Innovative design of spur gear tooth with infill structure”, Bull. Pol. Acad. Sci. Tech. Sci. 68(3), 477–483 (2020).
  39.  W. Ostapski and I. Mukha, “Stress state analysis of harmonic drive elements by FEM”, Bull. Pol. Acad. Sci. Tech. Sci. 55(1), 115–123 (2007).
  40.  M. Batsch, “Mathematical model and tooth contact analysis of convexo-concave helical bevel Novikov gear mesh”, Mech. Mach. Theory 149, 103842 (2020).
  41.  M. Batsch, T. Markowski, S. Legutko, and G.M. Krolczyk, “Measurement and mathematical model of convexo-concave Novikov gear mesh”, Measurement 125, 516–525 (2018).
  42.  M. Sobolak, P. Połowniak, M. Cieplak, M. Oleksy, and K. Bulanda, „Application of polymeric materials for obtaining gears with involute and sinusoidal profile”, Polimery 7‒8, 563‒567 (2020).
  43.  AGMA 6135–A02, Design, Rating and Application of Industrial Globoidal Wormgearing (Metric Edition), Am. Natl. Stand., 2002.
  44.  GOST 16502‒83, Basic requirements for interchange ability. Globoid gears. Tolerances, 1983.
  45.  GOST 17696‒89, Globoid gears. Calculation of geometry, 1989.
  46.  GOST 24438‒80, Globoid gears. Basic worm and basic generating worm, 1980.
  47.  GOST 9369‒77, Globoid gear pairs. Basic parameters, 1977.
  48.  M. Sobolak, P. Polowniak, P.E. Jagielowicz, “Generating of globoid helix in CATIA environment using laws”, Mechanik 7, 632–633 (2016), [in Polish].

Date

09.03.2021

Type

Article

Identifier

DOI: 10.24425/bpasts.2021.136736

Source

Bulletin of the Polish Academy of Sciences: Technical Sciences; 2021; 69; 2; e136736
×