Details

Title

Slow flow past a weakly permeable spheroidal particle in a hypothetical cell

Journal title

Archive of Mechanical Engineering

Yearbook

2021

Volume

vol. 68

Issue

No 2

Authors

Affiliation

Bucha, Tina : Department of Mathematics, National Institute of Technology, Raipur, Chhattisgarh, India ; Prasad, Madasu Krishna : Department of Mathematics, National Institute of Technology, Raipur-492010, Chhattisgarh, India

Keywords

permeable spheroid ; cell models ; Stokes law ; Darcy's Law ; BJSJ condition

Divisions of PAS

Nauki Techniczne

Coverage

119-146

Publisher

Polish Academy of Sciences, Committee on Machine Building

Bibliography

[1] D.A. Nield and A. Bejan. Convection in Porous Media. Springer, New York, 2006.
[2] H.P.G. Darcy. Les Fontaines Publiques de la Ville de Dijon. Victor Delmont, Paris, 1856.
[3] H.C. Brinkman. A calculation of viscous force exerted by flowing fluid on dense swarm of particles. Applied Science Research, 1:27-34, 1949. doi: 10.1007/BF02120313.
[4] D.D. Joseph and L.N. Tao. The effect of permeability on the slow motion of a porous sphere. Journal of Applied Mathematics and Mechanics, 44(8-9):361-364, 1964. doi: 10.1002/zamm.19640440804.
[5] D.N. Sutherland and C.T. Tan. Sedimentation of a porous sphere. Chemical Engineering Science, 25(12):1948-1950, 1970. doi: 10.1016/0009-2509(70)87013-0.
[6] M.P. Singh and J.L. Gupta. The effect of permeability on the drag of a porous sphere in a uniform stream. Journal of Applied Mathematics and Mechanics, 51(1):27-32, 1971. doi: zamm.19710510103.
[7] I.P. Jones. Low Reynolds number flow past a porous spherical shell. Mathematical Proceedings of the Cambridge Philosophical Society, 73(1):231-238, 1973. doi: 10.1017/S0305004100047642.
[8] G. Neale, N. Epstein, and W. Nader. Creeping flow relative to permeable spheres. Chemical Engineering Science, 28(10):1865-1874, 1973. doi: 10.1016/0009-2509(73)85070-5.
[9] V.M. Shapovalov. Viscous fluid flow around a semipermeable particle. Journal of Applied Mechanics and Technical Physics, 50(4):584-588, 2009. doi: 10.1007/s10808-009-0079-x.
[10] G.S. Beavers and D.D. Joseph. Boundary conditions at a naturally permeable wall. Journal of Fluid Mechanics, 30(1):197-207, 1967. doi: 10.1017/S0022112067001375.
[11] P.G. Saffman. On the boundary condition at the surface of a porous medium. Studies in Applied Mathematics, 50(2):93-101, 1971. doi: 10.1002/sapm197150293.
[12] S. Khabthani, A. Sellier, and F. Feuillebois. Lubricating motion of a sphere towards a thin porous slab with Saffman slip condition. Journal of Fluid Mechanics, 867:949-968, 2019. doi: 10.1017/jfm.2019.169.
[13] M.C. Lai, M.C. Shiue, and K.C. Ong. A simple projection method for the coupled Navier-Stokes and Darcy flows. Computational Geosciences, 23:21-33, 2019. doi: 10.1007/s10596-018-9781-1.
[14] J. Happel and H. Brenner. Low Reynolds Number Hydrodynamics. Englewood Cliffs New Jork, Prentice-Hall, 1965.
[15] J. Happel. Viscous flow in multiparticle systems: slow motion of fluids relative to beds of spherical particles. American Institute of Chemical Engineers Journal, 4(2):197-201, 1958. doi: 10.1002/aic.690040214.
[16] S. Kuwabara. The forces experienced by randomly distributed parallel circular cylinders or spheres in a viscous flow at small Reynolds numbers. Journal of the Physical Society of Japan, 14(4):527-532,1959. doi: 10.1143/JPSJ.14.527.
[17] S.B. Chen and X. Ye. Boundary effect on slow motion of a composite sphere perpendicular to two parallel impermeable plates. Chemical Engineering Science, 55(13):2441-2453, 2000. doi: 10.1016/S0009-2509(99)00509-6.
[18] D. Srinivasacharya. Motion of a porous sphere in a spherical container. Comptes Rendus Mecanique, 333(8):612-616, 2005. doi: 10.1016/j.crme.2005.07.017.
[19] S.I. Vasin, A.N. Fillipov, and V.M. Starov. Hydrodynamic permeability of membranes built up by particles covered by porous shells: Cell models. Advances in Colloid Interface Science, 139(1-2):83-96, 2008. doi: 10.1016/j.cis.2008.01.005.
[20] P.K. Yadav, A. Tiwari, S. Deo, A. Filippov, and S. Vasin. Hydrodynamic permeability of membranes built up by spherical particles covered by porous shells: effect of stress jump condition. Acta Mechanica, 215:193-209, 2010. doi: 10.1007/s00707-010-0331-8.
[21] J. Prakash, G.P. Raja Sekhar, and M. Kohr. Stokes flow of an assemblage of porous particles: stress jump condition. Zeitschrift für angewandte Mathematik und Physik, 62:1027-1046, 2011. doi: 10.1007/s00033-011-0123-6.
[22] E.I. Saad. Stokes flow past an assemblage of axisymmetric porous spherical shell-in-cell models: effect of stress jump condition. Meccanica, 48:1747-1759, 2013. doi: 10.1007/s11012-013-9706-y.
[23] J. Prakash and G.P. Raja Sekhar. Estimation of the dynamic permeability of an assembly of permeable spherical porous particle using cell model. Journal of Engineering Mathematics, 80:63-73, 2013. doi: 10.1007/s10665-012-9580-y.
[24] M.K. Prasad and T. Bucha. Creeping flow of fluid sphere contained in a spherical envelope: magnetic effect. SN Applied Science, 1(12):1594, 2019. doi: 10.1007/s42452-019-1622-x.
[25] M.K. Prasad and T. Bucha. Magnetohydrodynamic creeping flow around a weakly permeable spherical particle in cell models. Pramana - Journal of Physics, 94(1):1-10, 2020. doi: 10.1007/s12043-019-1892-2.
[26] M.K. Prasad and T. Bucha. MHD viscous flow past a weakly permeable cylinder using Happel and Kuwabara cell models. Iranian Journal of Science and Technology Transaction A: Science, 44:1063-1073, 2020. doi: 10.1007/s40995-020-00894-4.
[27] D. Khanukaeva. Filtration of micropolar liquid through a membrane composed of spherical cells with porous layer. Theoretical and Computational Fluid Dynamics, 34(3):215-229, 2020. doi: 10.1007/s00162-020-00527-x.
[28] M.K. Prasad. Boundary effects of a nonconcentric semipermeable sphere using Happel and Kuwabara cell models. Applied and Computational Mechanics, 15:1-12, 2021. doi: 10.24132/acm.2021.620.
[29] G.G. Stokes. On the effect of the internal friction of fluids on the motion of pendulums. Proceedings of Cambridge Philosophical Society, 9:8-106, 1851.
[30] C.R. Reddy and N. Kishore. Momentum and heat transfer phenomena of confined spheroid particles in power-law liquids, Industrial and Engineering Chemical Research, 53(2):989-998, 2014. doi: 10.1021/ie4032428.
[31] A. Acrivos and T.D. Taylor. The Stokes flow past an arbitrary particle: the slightly deformed sphere. Chemical Engineering Science, 19(7):445-451, 1964. doi: 10.1016/0009-2509(64)85071-5.
[32] H. Ramkissoon. Stokes flow past a slightly deformed fluid sphere, Journal of Applied Mathematics and Physics, 37:859-866, 1986. doi: 10.1007/BF00953677.
[33] D. Palaniappan. Creeping flow about a slightly deformed sphere. Zeitschrift für angewandte Mathematik und Physik, 45:832-838, 1994. doi: 10.1007/BF00942756.
[34] G. Dassios, M. Hadjinicolaou, F.A. Coutelieris, and A.C. Payatakes. Stokes flow in spheroidal particle-in-cell models with Happel and Kuwabara boundary conditions. International Journal of Engineering Science, 33(10):1465-1490, 1995. doi: 10.1016/0020-7225(95)00010-U.
[35] H. Ramkissoon. Slip flow past an approximate spheroid. Acta Mechanica, 123:227-233, 1997. doi: 10.1007/BF01178412.
[36] T. Zlatanovski. Axi-symmetric creeping flow past a porous prolate spheroidal particle using the Brinkman model. The Quarterly Journal of Mechanics and Applied Mathematics, 52(1):111-126, 1999. doi: 10.1093/qjmam/52.1.111.
[37] S. Deo and S. Datta. Slip flow past a prolate spheroid. Indian Journal of Pure and Applied Mathematics, 33(6):903-909, 2002.
[38] P. Vainshtein, M. Shapiro, and C. Gutfinger. Creeping flow past and within a permeable spheroid. International Journal of Multiphase Flow, 28(12):1945-1963, 2002. doi: 10.1016/S0301-9322(02)00106-4.
[39] H. Ramkissoon and K. Rahaman. Wall effects on a spherical particle. International Journal of Engineering Science, 41(3-5), 283-290, 2003. doi: 10.1016/S0020-7225(02)00209-4.
[40] S. Senchenko and H.J. Keh. Slipping Stokes flow around a slightly deformed sphere. Physics of Fluids, 18(8):088104, 2006. doi: 10.1063/1.2337666.
[41] D. Srinivasacharya. Flow past a porous approximate spherical shell, Zeitschrift für angewandte Mathematik und Physik, 58, 646-658, 2007. doi: 10.1007/s00033-006-6003-9.
[42] Y.C. Chang and H.J. Keh. Translation and rotation of slightly deformed colloidal spheres experiencing slip. Journal of Colloid and Interface Science, 330:201-210, 2009. doi: 10.1016/j.jcis.2008.10.055.
[43] E.I. Saad. Translation and rotation of a porous spheroid in a spheroidal container. Canadian Journal of Physics, 88(9):689-700, 2010. doi: 10.1139/P10-040.
[44] E.I. Saad. Stokes flow past an assemblage of axisymmetric porous spheroidal particle in cell models. Journal of Porous Media, 15(9):849-866, 2012. doi: /10.1615/JPorMedia.v15.i9.40.
[45] D. Srinivasacharya and M.K. Prasad. Axisymmetric creeping motion of a porous approximate sphere with an impermeable core. The European Physics Journal Plus, 128(1):9, 2013. doi: 10.1140/epjp/i2013-13009-1.
[46] D. Srinivasacharya and M.K. Prasad. Creeping motion of a porous approximate sphere with an impermeable core in a spherical container. European Journal of Mechanics - B/Fluids, 36:104-114, 2012. doi: 10.1016/j.euromechflu.2012.04.001.
[47] D. Srinivasacharya and M.K. Prasad. Axisymmetric motion of a porous approximate sphere in an approximate spherical container. Archive of Mechanics, 65(6):485-509, 2013.
[48] K.P. Chen. Fluid extraction from porous media by a slender permeable prolate-spheroid. Extreme Mechanics Letter, 4:124-130, 2015. doi: 10.1016/j.eml.2015.06.001.
[49] M. Rasoulzadeh and F.J. Kuchuk. Effective permeability of a porous medium with spherical and spheroidal vug and fracture inclusions. Transport in Porous Media, 116:613-644, 2017. doi: 10.1007/s11242-016-0792-x.
[50] P.K. Yadav, A. Tiwari, and P. Singh. Hydrodynamic permeability of a membrane built up by spheroidal particles covered by porous layer. Acta Mechanica, 229:1869-1892, 2018. doi: 10.1007/s00707-017-2054-6.
[51] M.K. Prasad and T. Bucha. Steady viscous flow around a permeable spheroidal particle. International Journal of Applied and Computational Mathematics, 5:109, 2019. doi: 10.1007/s00707-017-2054-6.
[52] M.K. Prasad and T. Bucha. Effect of magnetic field on the slow motion of a porous spheroid: Brinkman's model. Archive of Applied Mechanics, 91:1739-1755, 2021. doi: 10.1007/s00419-020-01852-7.
[53] J.D. Sherwood. Cell models for suspension viscosity. Chemical Engineering Science, 61(10):6727-6731, 2006. doi: 10.1016/j.ces.2006.07.016.
[54] A. Tiwari, P.K. Yadav, and P. Singh. Stokes flow through assemblage of non homogeneous porous cylindrical particle using cell model technique. National Academy of Science Letters, 41(1):53-57, 2018. doi: 10.1007/s40009-017-0605-y.
[55] H.H. Sherief, M.S. Faltas, and E.I. Saad. Slip at the surface of an oscillating spheroidal particle in a micropolar fluid. ANZIAM Journal, 55(E):E1-E50, 2013. doi: 10.21914/anziamj.v55i0.6813.

Date

05.06.2021

Type

Article

Identifier

DOI: 10.24425/ame.2021.137044 ; ISSN 0004-0738, e-ISSN 2300-1895

Source

Archive of Mechanical Engineering; Ahead of print
×