Details

Title

A new predictive filter for nonlinear alignment model of stationary MEMS inertial sensors

Journal title

Metrology and Measurement Systems

Yearbook

2021

Volume

vol. 28

Issue

No 4

Authors

Affiliation

Alhassan, Hassan Majed : Malek Ashtar University of Technology, Faculty of Electrical & Computer Engineering, Tehran 15875-1774, Iran ; Ghahremani, Nemat Allah : Malek Ashtar University of Technology, Faculty of Electrical & Computer Engineering, Tehran 15875-1774, Iran

Keywords

predictive filter ; nonlinear alignment ; model error ; optimization ; MEMS inertial sensors

Divisions of PAS

Nauki Techniczne

Coverage

673-691

Publisher

Polish Academy of Sciences Committee on Metrology and Scientific Instrumentation

Bibliography

[1] Britting, K. R. (1971). Inertial navigation systems analysis. Wiley Interscience.
[2] Chang, L., Li, J., & Li, K. (2016). Optimization-based alignment for strapdown inertial navigation system: Comparison and extension. IEEE Transactions on Aerospace and Electronic Systems, 52(4), 1697–1713. https://doi.org/10.1109/TAES.2016.130824
[3] Xue, H., Guo, X., & Zhou, Z. (2016). Parameter identification method for SINS initial alignment under inertial frame. Mathematical Problems in Engineering, 2016, 5301242. https://doi.org/10.1155/2016/5301242
[4] Wang, D., Dong, Y., Li, Q., Wu, J., & Wen, Y. (2018). Estimation of small UAV position and attitude with reliable in-flight initial alignment for MEMSinertial sensors. Metrology and Measurement Systems, 25(3), 603–616. https://doi.org/10.24425/123904
[5] Ghanbarpourasl, H. (2020). A new robust quaternion-based initial alignment algorithm for stationary strapdown inertial navigation systems. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 234(12), 1913–1925. https://doi.org/10.1177/0954410020920473
[6] Guo, S., Chang, L., Li, Y., & Sun, Y. (2020). Robust fading cubature Kalman filter and its application in initial alignment of SINS. Optik, 202, 163593. https://doi.org/10.1016/j.ijleo.2019.163593
[7] Zhang, T., Wang, J., Jin, B., & Li, Y. (2019). Application of improved fifth-degree cubature Kalman filter in the nonlinear initial alignment of strapdown inertial navigation system. Review of Scientific Instruments, 90(1), 015111. https://doi.org/10.1063/1.5061790
[8] Xing, H., Chen, Z.,Wang, C., Guo, M., & Zhang, R. (2019). Quaternion-based Complementary Filter for Aiding in the Self-Alignment of the MEMS IMU. 2019 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL), USA, 1–4. https://doi.org/10.1109/ISISS.2019.8739728
[9] Yang, B., Xu, X., Zhang, T., Sun, J., & Liu, X. (2017). Novel SINS initial alignment method under large misalignment angles and uncertain noise based on nonlinear filter. Mathematical Problems in Engineering, 2017, 5917917. https://doi.org/10.1155/2017/5917917
[10] Sun, J., Xu, X., Liu, Y., Zhang, T., & Li, Y. (2015). Initial alignment of large azimuth misalignment angles in SINS based on adaptive UPF. Sensors, 15(9), 21807–21823. https://doi.org/10.3390/s150921807
[11] Han, H., Wang, J., & Du, M. (2017). A fast SINS initial alignment method based on RTS forward and backward resolution. Journal of Sensors, 2017, 7161858. https://doi.org/10.1155/2017/7161858
[12] Kaygısız, B. H., & Sen, B. (2015). In-motion alignment of a low-cost GPS/INS under large heading error. The Journal of Navigation, 68(2), 355–366. https://doi.org/10.1017/S0373463314000629
[13] Xia, X.,&Sun, Q. (2018). Initial alignment algorithm based on theDMCSmethod in single-axis RSINS with large azimuth misalignment angles for submarines. Sensors, 18(7), 1807–2123. https://doi.org/10.3390/s18072123
[14] Li, J., Gao, W., Zhang, Y., & Wang, Z. (2018). Gradient Descent Optimization-Based Self-Alignment Method for Stationary SINS. IEEE Transactions on Instrumentation and Measurement, 68(9), 3278– 3286. https://doi.org/10.1109/TIM.2018.2878071
[15] Camacho, E. F., Ramírez, D. R., Limón, D., De La Peña, D. M., & Alamo, T. (2010). Model predictive control techniques for hybrid systems. Annual Reviews in Control, 34(1), 21–31. https://doi.org/10.1016/j.arcontrol.2010.02.002
[16] Titterton, D., Weston, J. L., & Weston, J. (2004). Strapdown inertial navigation technology. IET. https://doi.org/10.1049/PBRA017E
[17] Analog Devices. (2018). Tactical Grade Ten Degrees of Freedom Inertial Sensor – ADIS16488A. [Datasheet, Rev. F]. https://www.analog.com/media/en/technical-documentation/data-sheets/ADIS16488A.pdf

Date

2021.12.22

Type

Article

Identifier

DOI: 10.24425/mms.2021.137702
×