Details

Title

Microscopic simulation of pedestrian traffic in urban environment under epidemic conditions

Journal title

Bulletin of the Polish Academy of Sciences Technical Sciences

Yearbook

2021

Volume

69

Issue

4

Affiliation

Paciorek, Mateusz : AGH University of Science and Technology, al. Adama Mickiewicza 30, 30-059 Krakow, Poland ; Poklewski-Koziełł, Damian : Cracow University of Technology, ul. Warszawska 24, 31-155 Krakow, Poland ; Racoń-Leja, Kinga : Cracow University of Technology, ul. Warszawska 24, 31-155 Krakow, Poland ; Byrski, Aleksander : AGH University of Science and Technology, al. Adama Mickiewicza 30, 30-059 Krakow, Poland ; Gyurkovich, Mateusz : Cracow University of Technology, ul. Warszawska 24, 31-155 Krakow, Poland ; Turek, Wojciech : AGH University of Science and Technology, al. Adama Mickiewicza 30, 30-059 Krakow, Poland

Authors

Keywords

epidemic modeling ; pedestrian dynamics simulation ; urban environment

Divisions of PAS

Nauki Techniczne

Coverage

e137725

Bibliography

  1.  I. Mironowicz, Modele transformacji miast. Wrocław: Oficyna Wydawnicza Politechniki Wrocławskiej, 2016.
  2.  A. Matusik, K. Racoń-Leja, M. Gyurkovich, and K. Dudzic-Gyurkovich, “Hydrourban spatial development model for a resilient inner-city. the example of gdańsk,” Archit. City Environ., vol. 15, no. 43, pp. 1–2, 2020.
  3.  J.L. Kriken, P. Enquist, and R. Rapaport, City building: nine planning principles for the twenty-first century. Princeton Architectural Press, 2011.
  4.  W. Kosiński, Paradigm of the City of the 21st Century. Between the Past of the Polis and the Future of the Metropolis, J. Gyurkovich, Ed. Kraków: Wydaw. PK, 2016.
  5.  J.F.P. Rose, The well-tempered city: what modern science, ancient civilizations, and human nature teach us about the future of urban life. Harper Wave, 2017.
  6.  E. Rewers, Post-Polis. Wstęp do filozofii ponowoczesnego miasta. Kraków: Universitas, 2005, [in Polish].
  7.  M. Dymnicka, Przestrzeń publiczna, a przemiany miasta. Warszawa: Wydawnictwo Naukowe Scholar, 2013, [in Polish].
  8.  M. Gyurkovich et al., Hybrid Urban Structures, M. Gyurkovich, Ed. Kraków: Wydaw. PK, 2016.
  9.  S. Kostof, The City Shaped.Urban Patterns and Meanings through History. London – New York: Thames & Hudson, 1999.
  10.  A.A. Kantarek, Tkanka urbanistyczna.Wybrane zagadnienia, J. Gyurkovich, Ed. Kraków: Wydaw. PK, 2019, [in Polish].
  11.  A. Noworól, “Functional urban area as the city of the future,” Tech. Trans., vol. 111, no. 1-A, 2014.
  12.  K. Racoń-Leja, Miasto i wojna: wpływ II wojny światowej na przekształcenia struktury przestrzennej i współczesną kondycję urbanistyczną wybranych miast europejskich, J. Gyurkovich, Ed. Kraków: Wydaw. PK, 2019, [in Polish].
  13.  J. Teller, “Urban density and covid-19: towards an adaptive approach,” Build. Cities, vol. 2, no. 1, pp. 150–165, 2021.
  14.  C. at Johns Hopkins University, “Covid-19 dashboard by the center for systems science and engineering,” 2021, [Online] Available: https:// coronavirus.jhu.edu/map.html.
  15.  M. Castells, “Communication, power and counter-power in the network society,” Int. J. Commun., vol. 1, no. 1, p. 29, 2007.
  16.  R. Sennet, “How should we live? density in postpandemic cities,” Domus, no. 1046, 2020, [Online]. Available: https://www.domusweb. it/en/architecture/2020/05/09/how-should-we-live-density-in-post-pandemic-cities.html.
  17.  M. Kowicki, Rozproszenie zabudowy na obszarach Małopolski, a kryzys kreatywności opracowań planistyczno-przestrzennych. Kraków: Wydaw. PK, 2014, [in Polish].
  18.  G. Korzeniak et al., Małe i średnie miasta w policentrycznym rozwoju Polski. Kraków: Instytut Rozwoju Miast, 2014, [in Polish].
  19.  GUS, “Demographic Yearbook of Poland,” 2019.
  20.  N.A. Salingaros, “Eight city types and their interactions: the “eight-fold” model,” Techn. Trans., vol. 2, pp. 5–70, 2017.
  21.  J. Busquets and M. Corominas, Cerda and the Barcelona of the future: reality versus project. Centre de Cultura Contemporania de Barcelona, 2009.
  22.  A.A. Kantarek, K. Kwiatkowski, and I. Samuels, “From rural plots to urban superblocks,” Urban Morphology: journal of the International Seminar on Urban Form, vol. 22, no. 2, pp. 155–157, 2018.
  23.  M. Gyurkovich and A. Sotoca, “Towards the Cracow Metropolis – a dream or a reality? A selected issues,” Tech. Trans., vol. 115, no. 2, pp. 5–25, 2018.
  24.  P. Lorens, Równoważenie rozwoju przestrzennego miast polskich. Gdańsk: Wydaw. PG, 2013, [in Polish].
  25. Back to the Sense of the City: 11th VCT International monograph book, Year 2016, July, Krakow. Barcelona: Centre of Land Policy and Valuations (CPSV), 2016.
  26.  A. Zwoliński, “Geometrical structure of public spaces in virtual city models. exploring urban morphology by hierarchy of open spaces,” Space Form, vol. 2019, no. 37, pp. 235–243, 2019.
  27.  K. Lynch, Good city form. MIT Press, 2001.
  28.  D.C. Duives, W. Daamen, and S.P. Hoogendoorn, “State-ofthe-art crowd motion simulation models,” Transp. Res. Part C Emerging Technol., vol. 37, pp. 193–209, 2013.
  29.  E.D. Kuligowski, “Computer evacuation models for buildings,” in SFPE Handbook of Fire Protection Engineering. Springer, 2016, pp. 2152–2180.
  30.  B. Zhan, D.N. Monekosso, P. Remagnino, S.A. Velastin, and L.-Q.Xu, “Crowd analysis: a survey,” Mach. Vision Appl., vol. 19, no. 5‒6, pp. 345–357, 2008.
  31.  K. Teknomo, Y. Takeyama, and H. Inamura, “Review on microscopic pedestrian simulation model,” CoRR, vol. abs/1609.01808, 2016. [Online]. Available: http://arxiv.org/abs/1609.01808.
  32.  M. Paciorek, A. Bogacz, and W. Turek, “Scalable signal-based simulation of autonomous beings in complex environments,” in Computational Science – ICCS 2020. Cham: Springer International Publishing, 2020, pp. 144–157.
  33.  J. Wąs and R. Lubaś, “Towards realistic and effective agentbased models of crowd dynamics,” Neurocomputing, vol. 146, pp. 199–209, 2014.
  34.  P. Wittek and X. Rubio-Campillo, “Scalable agent-based modelling with cloud hpc resources for social simulations,” in 4th IEEE International Conference on Cloud Computing Technology and Science Proceedings. IEEE, 2012, pp. 355–362.
  35.  J. Bujas, D. Dworak, W. Turek, and A. Byrski, “Highperformance computing framework with desynchronized information propagation for large-scale simulations,” J. Comput. Sci, vol. 32, pp. 70–86, 2019.
  36.  Y. Mohamadou, A. Halidou, and P.T. Kapen, “A review of mathematical modeling, artificial intelligence and datasets used in the study, prediction and management of covid-19,” Appl. Intell, vol. 50, no. 11, pp. 3913–3925, 2020.
  37.  M. Fuentes and M. Kuperman, “Cellular automata and epidemiological models with spatial dependence,” Physica A, vol. 267, no. 3, pp. 471‒486, 1999.
  38.  I. Tiwari, P. Sarin, and P. Parmananda, “Predictive modeling of disease propagation in a mobile, connected community using cellular automata,” Chaos: Interdiscip. J. Nonlinear Sci., vol. 30, no. 8, p. 081103, 2020.
  39.  M. Dascalu, M. Malita, A. Barbilian, E. Franti, and G.M. Stefan, “Enhanced cellular automata with autonomous agents for covid-19 pandemic modeling,” Rom. J. Inf. Sci. Technol, vol. 23, pp. S15–S27, 2020.
  40.  Y. Xiao, M. Yang, Z. Zhu, H. Yang, L. Zhang, and S. Ghader, “Modeling indoor-level non-pharmaceutical interventions during the covid-19 pandemic: a pedestrian dynamics-based microscopic simulation approach,” Transp. Policy, vol. 109, pp. 12–23, 2021.
  41.  T. Kapecki, “Elements of sustainable development in the context of the environmental and financial crisis and the covid-19 pandemic,” Sustainability, vol. 12, no. 15, pp. 1–12, 2020.
  42.  A. Jasiński, “Public space or safe space–remarks during the covid-19 pandemic,” Tech. Trans., vol. 117, no. 1, 2020.
  43.  S. Gzell, “Urban design and the sense of the city,” Tech. Trans., vol. 113, no. 2-A, pp. 15–19, 2016.
  44.  M. Hanzl, “Urban forms and green infrastructure–the implications for public health during the covid-19 pandemic,” Cities Health, pp. 1–5, 2020, doi: 10.1080/23748834.2020.1791441.
  45.  M.D. Pinheiro and N.C. Luís, “Covid-19 could leverage a sustainable built environment,” Sustainability, vol. 12, no. 14, p. 5863, 2020.
  46.  M.R. Fatmi, “Covid-19 impact on urban mobility,” J. Urban Manage., vol. 9, no. 3, pp. 270–275, 2020.
  47.  A. Porębska, P. Rizzi, S. Otsuki, and M. Shirotsuki, “Walkability and resilience: A qualitative approach to design for risk reduction,” Sustainability, vol. 11, no. 10, p. 2878, 2019.
  48.  F. Vergara Perucich, J. Correa Parra, and C. Aguirre-Nuñez, Atlas de indicadores espaciales de vulnerabilidad ante el covid-19 en Chile, F. Vergara, Ed. Centro Producción del Espacio, 2020.
  49.  W.H. Whyte et al., The social life of small urban spaces. Conservation Foundation Washington, DC, 1980.
  50.  A. Białkiewicz, B. Stelmach, and M.J. Żychowska, “Dobra kultury współczesnej. zarys problemu ochrony,” Wiadomości Konserwatorskie – J. Heritage Conserv., no. 63, pp. 152–162, 2020, [in Polish].
  51.  E. Szczerek, Rewitalizacja osiedli wielkopłytowych a ciągłośc´ i komplementarność przestrzeni publicznej miasta, A. Franta, Ed. Kraków: Wydaw. PK, 2018, [in Polish].
  52.  B. Malinowska-Petelenz, Sacrum in civitas: wybrane zagadnienia, A.A. Kantarek, Ed. Kraków: Wydaw. PK, 2018, [in Polish].
  53.  J. Gehl and B. Svarre, How to study public life. Washington, DC: Island press, 2013.

Date

26.06.2021

Type

Article

Identifier

DOI: 10.24425/bpasts.2021.137725
×