Details

Title

A simulation study of temperature effects on performance parameters of silicon heterojunction solar cells with different ITO/a-Si:H selective contacts

Journal title

Opto-Electronics Review

Yearbook

2022

Volume

30

Issue

1

Authors

Affiliation

Balent, Jošt : University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000 Ljubljana, Slovenia ; Topič, Marko : University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000 Ljubljana, Slovenia ; Krč, Janez : University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000 Ljubljana, Slovenia

Keywords

heterojunction ; photovoltaics ; simulation ; temperature ; tunnelling

Divisions of PAS

Nauki Techniczne

Coverage

e140557

Publisher

Polish Academy of Sciences (under the auspices of the Committee on Electronics and Telecommunication) and Association of Polish Electrical Engineers in cooperation with Military University of Technology

Bibliography

  1. Green, M. et al. Solar cell efficiency tables (version 57). Prog. Photovolt. 29, 3–15 (2021). https://doi.org/10.1002/pip.3371
  2. Langner, A. Photovoltaics Report. ise.frauenhofer https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/Photovoltaics-Report.pdf (2021). (Accessed: 8th Nov. 2021).
  3. Battaglia, C., Cuevas, A. & De Wolf, S. High-efficiency crystalline silicon solar cells: status and perspectives. Energy Environ. Sci. 9, 1552–1576 (2016). https://doi.org/10.1039/C5EE03380B
  4. Feldmann, F., Reichel, M. B. C., Hermle, M. & Glunz, S. W. A Passivated Rear Contact for High-Efficiency n-Type Silicon Solar Cells Enabling High Vocs and FF>82 %. in 28th European Photovoltaic Solar Energy Conference and Exhibition 988–992 (2013). https://doi.org/10.4229/28thEUPVSEC2013-2CO.4.4
  5. Luque, A. & Hegedus, S. Handbook of Photovoltaic Science and Engineering. (John Wiley & Sons, Ltd., 2011).
  6. Yamaguchi, M., Dimroth, F., Geisz, J. F. & Ekins-Daukes, N. J. Multi-junction solar cells paving the way for super high-efficiency. J. Appl. Phys. 129, 240901 (2021). https://doi.org/10.1063/5.0048653
  7. Best Research-Cell Efficiency Chart. National Renewable Energy Laboratory https://www.nrel.gov/pv/cell-efficiency.html (Accessed: 27th Dec. 2021).
  8. Yoshikawa, K. et al. Silicon heterojunction solar cell with inter-digitated back contacts for a photoconversion efficiency over 26  %. Nat. Energy 2, 17032 (2017). https://doi.org/10.1038/nenergy.2017.32
  9. Richter, A., Hermle, M. & Glunz, S. W. Reassessment of the limiting efficiency for crystalline silicon solar cells. IEEE J. Photovolt. 3, 1184–1191 (2013). https://doi.org/10.1109/JPHOTOV.2013.2270351
  10. Jaeckel, B. et al. Combined Standard for PV Module Design Qualification and Type Approval: New IEC 61215 - Series. in 29th European PV Solar Energy Conference and Exhibition (EU PVSEC 2014) (2014).
  11. Cattin, J. et al. Optimized design of silicon heterojunction solar cells for field operating conditions. IEEE J. Photovolt. 9, 1541–1547 (2019). https://doi.org/10.1109/JPHOTOV.2019.2938449
  12. SentaurusTM Device User Guide Q-2020.09-SP1. (2020).
  13. Cotfas, D. T., Cotfas, P. A. & Machidon, O. M. Study of temperature coefficients for parameters of photovoltaic cells. Int. J. Photoenergy 2018, 5945602 (2018). https://doi.org/10.1155/2018/5945602
  14. Dupré, O., Vaillon, R. & Green, M. A. Thermal Behavior of Photovoltaic Devices: Physics and Engineering. (Springer, 2016).
  15. Balent, J., Smole, F., Topic, M. & Krc, J. Numerical analysis of selective ito/a-si:h contacts in heterojunction silicon solar cells: effect of defect states in doped a-si:h layers on performance parameters. IEEE J. Photovolt. 11, 634–647 (2021). https://doi.org/10.1109/JPHOTOV.2021.3063019
  16. Mikolášek, M., Racko, J. & Harmatha, L. Analysis of low temperature output parameters for investigation of silicon heterojunction solar cells. Appl. Surf. Sci. 395, 166–171 (2017). https://doi.org/10.1016/j.apsusc.2016.04.023
  17. Ganji, J. Numerical simulation of thermal behavior and optimization of a-Si/a-Si/C-Si/a-Si/A-Si hit solar cell at high temperatures. Electr. Eng. Electromech. 6, 47–52 (2017). https://doi.org/10.20998/2074-272X.2017.6.07
  18. Martini, L., Serenelli, L., Menchini, F., Izzi, M. & Tucci, M. Silicon heterojunction solar cells toward higher fill factor. Prog. Photovolt. 28, 307–320 (2020). https://doi.org/10.1002/pip.3241
  19. Heidarzadeh, H. Performance analysis of an HJ-IBC silicon solar cell in ultra-high temperatures: possibility of lower reduction efficiency rate. Silicon 12, 1369–1377 (2020). https://doi.org/10.1007/s12633-019-00230-5
  20. Abdallah, A. et al. Towards an optimum silicon heterojunction solar cell configuration for high temperature and high light intensity environment. Energy Procedia 124, 331–337 (2017). https://doi.org/10.1016/j.egypro.2017.09.307
  21. Krč, J., Smole, F. & Topic, M. One-dimensional semi-coherent optical model for thin film solar cells with rough interfaces. Inform. MIDEM 32, 6–13 (2002). http://www.midem-drustvo.si/Journal%20papers/MIDEM_32(2002)1p6.pdf
  22. Lokar, Z. et al. Coupled modelling approach for optimization of bifacial silicon heterojunction solar cells with multi-scale interface textures. Opt. Express 27, A1554–A1568 (2019). https://doi.org/10.1364/OE.27.0A1554
  23. Holman, Z. C. et al. . Current losses at the front of silicon heterojunction solar cells. IEEE J. Photovolt. 2, 7–15 (2012). https://doi.org/10.1109/JPHOTOV.2011.2174967
  24. Holman, Z. C. et al.. Infrared light management in high-efficiency silicon heterojunction and rear-passivated solar cells. J. Appl. Phys. 113, 013107 (2013). https://doi.org/10.1063/1.4772975
  25. Palik, E. D. Handbook of Optical Constants of Solids. (Academic Press, Elsevier, 1997).
  26. Kanevce, A. & Metzger, W. K. The role of amorphous silicon and tunnelling in heterojunction with intrinsic thin layer (HIT) solar cells. J. Appl. Phys. 105, 094507 (2009). https://doi.org/10.1063/1.3106642
  27. Procel, P. Opto-electrical modelling and optimization study of a novel IBC c-Si solar cell. Prog. Photovolt. 25, 452–469 (2017). https://doi.org/10.1002/pip.2874
  28. Procel, P., Yang, G., Isabella, O. & Zeman, M. Theoretical evaluation of contact stack for high efficiency IBC-SHJ solar cells. Sol. Energy Mater. Sol. Cells 186, 66–77 (2018). https://doi.org/10.1016/j.solmat.2018.06.021
  29. Shu, Z., Das, U., Allen, J., Birkmire, R. & Hegedus, S. Experimental and simulated analysis of front versus all-back-contact silicon heterojunction solar cells: effect of interface and doped a-Si:H layer defects. Prog. Photovolt. 23, 78–93 (2015). https://doi.org/10.1002/pip.2400
  30. Richter, A., Glunz, S. W., Werner, F., Schmidt, J. & Cuevas, A. Improved quantitative description of Auger recombination in crystalline silicon. Phys. Rev. B 86, 165202 (2012). https://doi.org/10.1103/PhysRevB.86.165202
  31. Filipic, M., Smole, F. & Topic, M. Optimization of Interdigitated Back Contact Geometry in Silicon Heterojunction Solar Cell. in 14th International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD 14) 161–162 (2014). https://doi.org/10.1109/NUSOD.2014.6935406
  32. Lombardi, C., Manzini, S., Saporito, A. & Vanzi, M. A physically based mobility model for numerical simulation of nonplanar devices. IEEE T. Comput. Aid. D. 7, 1164–1171 (1988). https://doi.org/10.1109/43.9186
  33. Bludau, W., Onton, A. & Heinke, W. Temperature dependence of the band gap of silicon. J. Appl. Phys. 45, 1846–1848 (1974). https://doi.org/10.1063/1.1663501
  34. Riesen, Y., Stuckelberger, M., Haug, F.-J., Ballif, C. & Wyrsch, N. Temperature dependence of hydrogenated amorphous silicon solar cell performances. J. Appl. Phys. 119, 044505 (2016). https://doi.org/10.1063/1.4940392
  35. Tauc, J. Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull. 3, 37–46 (1968). https://doi.org/10.1016/0025-5408(68)90023-8
  36. Zanatta, A. R. Revisiting the optical band gap of semiconductors and the proposal of a unified methodology to its determination. Sci. Rep. 9, 11225 (2019). https://doi.org/10.1038/s41598-019-47670-y
  37. Taguchi, M., Maruyama, E. & Tanaka, M. Temperature dependence of amorphous/crystalline silicon heterojunction solar cells. Jpn. J. Appl. Phys. 47, 814–818 (2008). https://doi.org/10.1143/JJAP.47.814
  38. Cattin, J. Influence of the Thicknesses of The Amorphous Silicon Layers on The Efficiency of Silicon Heterojunction Solar Cells for Various Climates. in 27th International Photovoltaic Science and Engineering Conference (PVSEC-27) (2017). https://pvsec-27.com/wp-content/themes/pvsec27/abstract/pages/abst/10389.pdf
  39. Cattin, J. Characterisation of Silicon Heterojunction Solar Cells Beyond Standard Test Conditions. (École polytechnique fédérale de Lausanne, 2020).
  40. Klein, A. et al. transparent conducting oxides for photovoltaics: manipulation of fermi level, work function and energy band alignment. Materials 3, 4892–4914 (2010). https://doi.org/10.3390/ma3114892
  41. Bivour, M., Schröer, S. & Hermle, M. Numerical analysis of electrical TCO / a-Si:H(p) contact properties for silicon heterojunction solar cells. Energy Procedia 38, 658–669 (2013). https://doi.org/10.1016/j.egypro.2013.07.330
  42. Bivour, M. Silicon heterojunction solar cells: Analysis and basic understanding. (Fraunhofer Verlag, Freiburg, 2017).
  43. Sachenko, A. V. et al. The temperature dependence of the characteristics of crystalline-silicon-based heterojunction solar cells. Tech. Phys. Lett. 42, 313–316 (2016). https://doi.org/10.1134/S1063785016030305
  44. Saive, R. S-shaped current–voltage characteristics in solar cells: A Review. IEEE J. Photovolt. 9, 1477–1484 (2019). https://doi.org/10.1109/JPHOTOV.2019.2930409
  45. Palma, A., Godoy, A., Jiménez-Tejada, J. A., Carceller, J. E. & López-Villanueva, J. A. Quantum two-dimensional calculation of time constants of random telegraph signals in metal-oxide-semiconductor structures. Phys. Rev. B 56, 9565–9574 (1997). https://doi.org/10.1103/PhysRevB.56.9565
  46. Jiménez-Molinos, F., Gámiz, F., Palma, A., Cartujo, P. & López-Villanueva, J. A. Direct and trap-assisted elastic tunneling through ultrathin gate oxides. J. Appl. Phys. 91, 5116–5124 (2002). https://doi.org/10.1063/1.1461062
  47. Procel, P. et al.The role of heterointerfaces and subgap energy states on transport mechanisms in silicon heterojunction solar cells. Prog. Photovolt. 28, 935–945 (2020). https://doi.org/10.1002/pip.3300
  48. Lin, L. & Ravindra, N. M. Temperature dependence of CIGS and perovskite solar cell performance: an overview. SN Appl. Sci. 2, 1361 (2020). https://doi.org/10.1007/s42452-020-3169-2

Date

24.02.2022

Type

Article

Identifier

DOI: 10.24425/opelre.2022.140557
×