Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 348
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The review exposes basic concepts and manifestations of the singular and structured light fields. The presentation is based on deep intrinsic relations between the singularities and the rotational phenomena in light; it involves essentially the dynamical aspects of light fields and their interactions with matter. Due to their topological nature, the singularities of each separate parameter (phase, polarization, energy flow, etc.) form coherent interrelated systems (singular networks), and the meaningful interconnections between the different singular networks are analysed. The main features of singular-light structures are introduced via generic examples of the optical vortex and circular vortex beams. The review describes approaches for generation and diagnostics of different singular networks and underlines the role of singularities in formation of optical field structures. The mechanical action of structured light fields on material objects is discussed on the base of the spin-orbital (canonical) decomposition of electromagnetic momentum, expressing the special roles of the spin (polarization) and spatial degrees of freedom. Experimental demonstrations spectacularly characterize the topological nature and the immanent rotational features of the light-field singularities. The review is based on the results obtained by its authors with a special attention to relevant works of other researchers.
Go to article

Bibliography

  1. Descartes, R. Principia Phylosophiae. (Amsterdam, 1644); Dioptrique, Meteores. (Leyden, 1637).
  2. Descartes, R. [The World]. Le Monde, Ou Traité De La Lumière. (Abaris Books, 1979).
  3. Fresnel, A. Œuvres Complètes. (Imprimerie Imperiale, France, 1866–1870). (In French)
  4. Faraday, M. Experimental Researches in Chemistry and Physics. (Taylor & Francis, 1859). https://doi.org/10.5962/bhl.title.30054
  5. Maxwell, J. C. Treatise on Electricity and Magnetism. (Cambridge University Press, 1873). https://doi.org/10.1017/CBO9780511709333
  6. Sadowsky, A. Acta et Commentationes Imp. Universitatis Jurievensis (olim Dorpatensis) 7, 1–3 (1899). (In Russian)
  7. Poynting, J. H. The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light. R. Soc. Lond. A 82, 560–567 (1909). https://doi.org/10.1098/rspa.1909.0060
  8. Beth, R. A. Mechanical detection and measurement of the angular momentum of light. Rev. 50, 115–125 (1939). https://doi.org/10.1103/PhysRev.50.115
  9. Ignatowski, W. S. Diffraction by a lens of arbitrary aperture. Opt. Inst. I, 1–36 (1919). https://doi.org/10.1017/9781108552264.019
  10. Boivin, A., Dow, J. & Wolf, E. Energy flow in the neighbourhood of the focus of a coherent beam. Opt. Soc. Am. 57, 1171–1176 (1967). https://doi.org/10.1364/JOSA.57.001171
  11. Baranova, N.B. et al. Wave-front dislocations: topological limitations for adaptive systems with phase conjugation. Opt. Soc. Am. 73, 525–528 (1983). https://doi.org/10.1364/JOSA.73.000525
  12. Angelsky, O. V., Maksimyak, P. P., Magun, I. I. & Perun, T. O. On spatial stochastiation of optical fields and feasibilities of optical diagnostics of objects with large phase inhomogeneities. Spectr. 71, 123–128 (1991).
  13. Coullet, P., Gil, L. & Rocca, F. Optical vortices. Commun. 73, 403–408 (1989). https://doi.org/10.1016/0030-4018(89)90180-6
  14. Gottfried, K. Quantum Mechanics. (Benjamin, 1966).
  15. Simmonds, J. W. & Guttmann, M. J. States, Waves and Photons. (Addison-Wesley, 1970).
  16. Berestetskii, V. B., Lifshits, E. M. & Pitaevskii, L. P. Quantum Electrodynamics. (Butterworth-Heinemann, 1982). https://doi.org/10.1016/C2009-0-24486-2
  17. Allen, L., Beijersbergen, M. V., Spreeuw, R. J. C. & Woerdman, J. P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Rev. A 45, 8185–8189 (1992). https://doi.org/10.1103/PhysRevA.45.8185
  18. Bazhenov, V. Yu., Vasnetsov, M. V. & Soskin M. S. Laser beams with screw dislocations in their wavefronts. JETP Lett. 52, 429–431(1990).
  19. Soskin, M. S. & Vasnetsov, M. V. Nonlinear singular optics. Pure Appl. Opt. 7, 301–311 (1998). https://doi.org/10.1088/0963-9659/7/2/019
  20. Soskin, M. S. & Vasnetsov, M. V. Chapter 4–Singular optics. Opt. 42, 219–276 (2001). https://doi.org/10.1016/S0079-6638(01)80018-4
  21. Nye, J. F. & Berry, M. V. Dislocations in wave trains. R. Soc. Lond. 336, 165–190 (1974). https://doi.org/10.1098/rspa.1974.0012
  22. Berry, M. V. Singularities in Waves and Rays. in Physics of Defects. (eds. Balian, R., Klaeman, M. & Poirier, J. P.) 453–549 (North Holland Publishing Company, 1981).
  23. Nye, J. F. Natural Focusing and Fine Structure of Light. Caustics and Wave Dislocations. (Institute of Physics Publishing: Bristol and Philadelphia, 1999).
  24. Gbur, G., Tyson, R. K., Vortex beam propagation through atmospheric turbulence and topological charge conservation. Opt. Soc. Am. A: Opt. Image Sci. Vis. 25, 225–230 (2008). https://doi.org/10.1364/JOSAA.25.000225
  25. Angelsky, O. V. et al. Structured light: ideas and concepts. Front. Phys. 8, 114 (2020). https://doi.org/10.3389/fphy.2020.00114
  26. Andrews, D. L. Structured Light and Its Applications: An Introduction to Phase-Structured Beams and Nanoscale Optical Forces. (Academic Press, 2011). https://doi.org/10.1016/B978-0-12-374027-4.X0001-1
  27. Bekshaev, A., Bliokh, K. & Soskin, M. Internal flows and energy circulation in light beams. J Opt. 13, 053001 (2011). https://doi.org/10.1088/2040-8978/13/5/053001
  28. Rubinsztein-Dunlop, H. et al. Roadmap on structured light. Opt. 19, 013001 (2017).
    https://doi.org/10.1088/2040-8978/19/1/013001
  29. Rotenberg, N. & Kuiper, L. Mapping nanoscale light fields. Nat. Photonics 8, 919–926 (2014). https://doi.org/10.1038/nphoton.2014.285
  30. Aiello, A. & Banzer, P. The ubiquitous photonic wheel. Opt. 18, 085605 (2016). http://dx.doi.org/10.1088/2040-8978/18/8/085605
  31. Aiello, A. et al. From transverse angular momentum to photonic wheels. Photonics 9, 789–795 (2015). https://doi.org/10.1038/nphoton.2015.203
  32. Bekshaev, A. & Soskin, M. S. Transverse energy flows in vectorial fields of paraxial beams with singularities. Opt. Commun., 271, 332–348 (2007). https://doi.org/10.1016/j.optcom.2006.10.057
  33. Bliokh, K. & Nori, F. Transverse and longitudinal angular momenta of light. Phys. Rep. 592, 1–38 (2015). https://doi.org/10.1016/j.physrep.2015.06.003
  34. Dennis, M. , O’Holleran, K. & Padgett, M. J. Chapter 5 Singular optics: optical vortices and polarization singularities. Prog. opt. 53, 293–363 (2009). https://doi.org/10.1016/S0079-6638(08)00205-9
  35. Basisty, I. , Soskin, M. S. & Vasnetsov, M. V. Optical wavefront dislocations and their properties. Opt. Comm. 119, 604–612 (1995). https://doi.org/10.1016/0030-4018(95)00267-C
  36. Soskin, M. , Vasnetsov, M. V. & Basisty, I. V. Optical wavefront dislocations. Proc. SPIE 2647, 57–62 (1995). https://doi.org/10.1117/12.226741
  37. White, A. et al. Interferometric measurements of phase singulari­ties in the output of a visible laser. J. Mod. Opt. 38, 2531–2541 (1991). https://doi.org/10.1080/09500349114552651
  38. Heckenberg, N. , McDuff, R., Smith, C. P. & White, A. G. Generation of optical singularities by computer-generated holograms. Opt. Lett. 17, 221–223 (1992). https://doi.org/10.1364/OL.17.000221
  39. Angelsky, O. Optical Correlation Techniques and Applications. (Bellingham: SPIE Press PM168, 2007). https://doi.org/10.1117/3.714999
  40. Allen, L., Padgett, M. & Babiker, M. IV The orbital angular momentum of light. Prog. Opt. 39, 291–372 (1999). https://doi.org/10.1016/S0079-6638(08)70391-3
  41. Bekshaev, A., Soskin, M. & Vasnetsov M. Paraxial Light Beams with Angular Momentum. (New York: Nova Science Publishers, 2008). https://arxiv.org/abs/0801.2309
  42. Gbur, G. Singular Optics. (CRC Press, 2016). https://doi.org/10.1201/9781315374260
  43. Senthilkumaran, P. Singularities in Physics and Engineering. (IOP Publishing,2018). https://doi.org/10.1088/978-0-7503-1698-9
  44. Yao, A. & Padgett, M. J. Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photonics 3, 161–204 (2011). https://doi.org/10.1364/AOP.3.000161
  45. Barnett, S. , Babiker, M. & Padgett, M. J. Optical orbital angular momentum. Philos. Trans. R. Soc. A 375, 0444 (2017). http://doi.org/10.1098/rsta.2015.0444
  46. Habraken, S. M. Light with A Twist: Ray Aspects (Leiden University, Netherlands, 2010).
  47. Alexeyev, C. N. Propagation of optical vortices in periodically perturbed weakly guiding optical fibres. (Institute of Physical Optics of the Ministry of Education and Science of Ukraine, Lviv, 2010). (in Russian)
  48. Ruchi, Senthilkumaran P. & Pal, S. Phase singularities to polarization singularities. Int. J. Opt. 2020, 2812803 (2020). https://doi.org/10.1155/2020/2812803
  49. Born, M. & Wolf, E. Principles of Optics. (Pergamon, 1968).
  50. Landau, L. & Lifshitz, E. M. The classical theory of fields. Course of theoretical physics Vol. 2. (Pergamon, 1975). https://doi.org/10.1016/C2009-0-14608-1
  51. Berry, M. Optical currents. J. Opt. A: Pure Appl. Opt. 11, 11094001 (2009). https://doi.org/10.1088/1464-4258/11/9/094001
  52. Haus, H. Waves and Fields in Optoelectronics (Prentice-Hall, Inc., 1984).
  53. Bekshaev, A. & Karamoch, A. I. Spatial characteristics of vortex light beams produced by diffraction gratings with embedded phase singularity. Opt. Commun. 281, 1366–1374 (2008). https://doi.org/10.1016/j.optcom.2007.11.032
  54. Bekshaev, A. , Karamoch, A. I., Khoroshun, G. M., Masajada, J. & Ryazantsev, O. I. Special features of a functional beam splitter: diffraction grating with groove bifurcation. in Advances in Engineering Research vol. 28. (ed. Petrova, V. M.) 1–86 (Nova Science Publishers New York, 2019).
  55. McGloin, D. & Dholakia, K. Bessel beams: diffraction in a new light. Phys. 46, 15–28 (2005). https://doi.org/10.1080/0010751042000275259
  56. Karimi, E., Zito, G., Piccirillo, B., Marrucci, L. & Santamato, E. Hypergeometric-Gaussian modes. Lett. 32, 3053–3055 (2007). https://doi.org/10.1364/OL.32.003053
  57. Abramovitz, M. & Stegun, I. Handbook of Mathematical Functions (National Bureau of Standards, 1964)
  58. Berry, M. Paraxial beams of spinning light. SPIE 3487, 6–11 (1998). https://doi.org/10.1117/12.317704
  59. Roux, F. Distribution of angular momentum and vortex morphology in optical beams. Opt. Commun. 242, 45–55 (2004). https://doi.org/10.1016/j.optcom.2004.08.006
  60. Bekshaev, A., Orlinska, O. & Vasnetsov, M. Optical vortex generation with a “fork” hologram under conditions of high-angle diffraction. Commun. 283, 2006–2016 (2010). https://doi.org/10.1016/j.optcom.2010.01.012
  61. Baranova, N. , Zel’dovich, B. Ya., Mamaev, A. V., Philipetskii, N. F. & Shkunov, V. V. Dislocations of the wavefront of a speckle-inhomogeneous field (theory and experiment). JETP Lett. 33, 195–199 (1981).
  62. Beijersbergen, M. , Allen, L., Van der Veen, H. E. L. O. & Woerdman, J. P. Astigmatic laser mode converters and transfer of orbital angular momentum. Opt. Commun. 96, 123–132 (1993). https://doi.org/10.1016/0030-4018(93)90535-D
  63. Bekshaev, A. & Popov, A. Optical system for Laguerre-Gaussian / Hermite-Gaussian mode conversion. SPIE 4403, 296–301 (2001). https://doi.org/10.1117/12.428283
  64. Soroko, L. Holography and Coherent Optics. (Springer, Boston, 1980). https://doi.org/10.1007/978-1-4684-3420-0
  65. Petrov, D. Vortex–edge dislocation interaction in a linear medium. Opt.Commun.188, 307–312 (2001). https://doi.org/10.1016/S0030-4018(01)00993-2
  66. Cheng, S. et al. Composite spiral zone plate. IEEE Photon. J. 11, 1–11(2018). https://doi.org/10.1109/JPHOT.2018.2885004
  67. Sabatyan, A. & Behjat, Z. Radial phase modulated spiral zone plate for generation and manipulation of optical perfect vortex. Quantum Electron. 49, 371 (2017).
    https://doi.org/10.1007/s11082-017-1211-4
  68. Bekshaev, A. & Karamoch, A. I. Displacements and deformations of a vortex light beam produced by the diffraction grating with embedded phase singularity. Opt. Commun. 281, 3597–3610 (2008). https://doi.org/10.1016/j.optcom.2008.03.070
  69. Anan'ev, Y. & Bekshaev, A. Y. Theory of intensity moments for arbitrary light beams. Opt. Spectrosc. 76, 558–568 (1994).
  70. Bekshaev, A. , Mohammed, K. A. & Kurka, I. A. Transverse energy circulation and the edge diffraction of an optical vortex beam. Appl. Opt. 53, B27–B37 (2014). https://doi.org/10.1364/AO.53.000B27
  71. Oemrawsingh, S. R. et al. Production and characterization of spiral phase plates for optical wavelengths. Appl. Opt. 43, 688–694 (2004). https://doi.org/10.1364/AO.43.000688
  72. Berry, M. V. Optical vortices evolving from helicoidal integer and fractional phase steps. Opt. A Pure Appl. Opt. 6, 259 (2004). https://doi.org/10.1088/1464-4258/6/2/018
  73. Kotlyar, V. V. et al. Generation of phase singularity through diffracting a plane or Gaussian beam by a spiral phase plate.  Opt. Soc. Am. A: Opt. Image Sci. Vis. 22(5), 849–861(2005). https://doi.org/10.1364/JOSAA.22.000849
  74. Bomzon, Z., Biener, G., Kleiner, V. & Hasman, E. Space-variant Pancharatnam–Berry phase optical elements with computer-generated subwavelength gratings. Lett. 27, 1141–1143 (2002). https://doi.org/10.1364/OL.27.001141
  75. Biener, G., Niv, A., Kleiner, V. & Hasman, E. Formation of helical beams by use of Pancharatnam–Berry phase optical elements. Let. 27, 1875–1877 (2002). https://doi.org/10.1364/OL.27.001875
  76. Niv, A., Biener, G., Kleiner, V. & Hasman, E. Manipulation of the Pancharatnam phase in vectorial vortices. Express 14, 4208–4220 (2006). https://doi.org/10.1364/OE.14.004208
  77. Marucci, L., Manzo, C. & Paparo, D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Rev. Lett. 96, 163905 (2006). https://doi.org/10.1103/PhysRevLett.96.163905
  78. Basistiy, I. , Pas’ko, V. A., Slyusar, V. V., Soskin, M. S & Vasnetsov, M. V. Synthesis and analysis of optical vortices with fractional topological charges. J. Opt. A Pure Appl. Opt. 6, S166–S169 (2004). https://doi.org/10.1088/1464-4258/6/5/003
  79. Gbur, G. Fractional vortex Hilbert’s hotel. Optica 3, 222–225 (2016). https://doi.org/10.1364/OPTICA.3.000222
  80. Freund, I. & Shvartsman, N. Wave-field phase singularities: the sign principle. Rev. A 50, 5164 (1994). https://doi.org/10.1103/PhysRevA.50.5164
  81. Soskin, S., Gorshkov, V. N., Vasnetsov, M. V., Malos, J. T. & Heckenberg, N. R. Topological charge and angular momentum of light beams carrying optical vortices. Phys. Rev. A 56, 4064–4075 (1997). https://doi.org/10.1103/PhysRevA.56.4064
  82. Bialynicki-Birula, I. & Bialynicka-Birula, Z. Rotational frequency shift. Rev. Lett. 78, 2539–2542 (1997). https://doi.org/10.1103/PhysRevLett.78.2539
  83. Garetz, B. Angular Doppler effect. J. Opt. Soc. Am. 71, 609–611 (1981). https://doi.org/10.1364/JOSA.71.000609
  84. Garetz, B. & Arnold, S. Variable frequency shifting of circularly polarized laser radiation via a rotating half-wave plate. Opt. Commun. 31, 1–3 (1979).
    https://doi.org/10.1016/0030-4018(79)90230-X
  85. Simon, R., Kimble, H. & Sudarshan, E. C. G. Evolving geometric phase and its dynamical manifestation as a frequency shift: An optical experiment. Phys. Rev. Lett. 61, 19–22 (1988). https://doi.org/10.1103/PhysRevLett.61.19
  86. Bretenaker, F.& Le Floch, A. Energy exchanges between a rotating retardation plate and a laser beam. Rev. Lett. 65, 2316 (1990). https://doi.org/10.1103/PhysRevLett.65.2316
  87. Courtial, J., Dholakia, K., Robertson, D. , Allen, L. & Padgett, M. J. Measurement of the rotational frequency shift imparted to a rotating light beam possessing orbital angular momentum. Phys. Rev. Lett. 80, 3217–3219 (1998). https://doi.org/10.1103/PhysRevLett.80.3217
  88. Courtial, J., Robertson, D. , Dholakia, K., Allen, L. & Padgett, M. J. Rotational frequency shift of a light beam. Phys. Rev. Lett. 81, 4828–4830 (1998). https://doi.org/10.1103/PhysRevLett.81.4828
  89. Bekshaev, A. et al. Observation of rotational Doppler effect with an optical-vortex one-beam interferometer. Ukr. J. Phys. 47, 1035–1040 (2002). http://archive.ujp.bitp.kiev.ua/files/journals/47/11/471105p.pdf
  90. Basistiy, I.V., Bekshaev, A. , Vasnetsov, M. V., Slyusar, V. V. & Soskin, M. S. Observation of the rotational Doppler effect for optical beams with helical wave front using spiral zone plate. JETP Lett. 76, 486–489 (2002). https://doi.org/10.1134/1.1533771
  91. Basistiy, I. , Slyusar, V. V., Soskin, M. S., Vasnetsov, M. V. & Bekshaev, A. Ya. Manifestation of the rotational Doppler effect by use of an off-axis optical vortex beam. Opt. Lett. 28, 1185–1187 (2003). https://doi.org/10.1364/OL.28.001185
  92. Bekshaev, A. & Popov, A. Non-collinear rotational Doppler effect. SPIE 5477, 55–66 (2004). https://doi.org/10.1117/12.558759
  93. Bekshaev, A. & Grimblatov, V. M. Energy method of analysis of optical resonators with mirror deformations. Opt. Spectrosc. 58, 707–709 (1985).
  94. Bekshaev, A. , Grimblatov, V. M. & Kalugin, V. V. Misaligned Ring Resonator with A Lens-Like Medium. (Odessa University, 2016). https://doi.org/10.48550/arXiv.1612.01407
  95. Bekshaev, A. Manifestation of mechanical properties of light waves in vortex beam optical systems. Opt. Spectrosc. 88, 904–910 (2000). https://doi.org/10.1134/1.626898
  96. Bekshaev, A. Mechanical properties of the light wave with phase singularity. Proc. SPIE 3904, 131–139 (1999). https://doi.org/10.1117/12.370396
  97. Bekshaev, A. , Soskin, M. S. & Vasnetsov, M.V. Rotation of arbitrary optical image and the rotational Doppler effect. Ukr. J. Phys. 49, 490–495 (2004). http://archive.ujp.bitp.kiev.ua/files/journals/49/5/490512p.pdf
  98. Vinitskii, S. I., Derbov, V. L, Dubovik, V. M., Markovski, B. & Stepanovskii, Yu. P. Topological phases in quantum mechanics and polarization optics. Sov. Phys. Usp. 33, 403–429 (1990). https://doi.org/10.1070/PU1990v033n06ABEH002598
  99. Bekshaev, A. , Soskin, M. S. & Vasnetsov, M. V. An optical vortex as a rotating body: mechanical features of a singular light beam. J. Opt. A Pure Appl. Opt. 6, S170–S174 (2004). https://doi.org/10.1088/1464-4258/6/5/004
  100. Allen, L. & Padgett, M. The Poynting vector in Laguerre-Gaussian beams and the interpretation of their angular momentum density. Opt. Commun. 184, 67–71 (2000). https://doi.org/10.1016/S0030-4018(00)00960-3
  101. Bekshaev, A. Transverse rotation of the instantaneous field distribution and the orbital angular momentum of a light beam. J. Opt. A Pure Appl. Opt. 11, 094004 (2009). https://doi.org/10.1088/1464-4258/11/9/094004
  102. Bekshaev, A. Internal energy flows and instantaneous field of a monochromatic paraxial light beam. Appl. Opt. 51, C13–C16 (2012). https://doi.org/10.1364/AO.51.000C13
  103. Lekner, J. TM, TE, and ‘TEM’ beam modes: exact solutions and their problems. Opt. A Pure Appl. Opt. 3, 407–412 (2001). https://doi.org/10.1088/1464-4258/3/5/314
  104. Lekner, J. Phase and transport velocities in particle and electromagnetic beams. Opt. A Pure Appl. Opt. 4, 491–499 (2002). https://doi.org/10.1088/1464-4258/4/5/301
  105. Lekner, J. Polarization of tightly focused laser beams. Opt. A Pure Appl. Opt. 5, 6–14 (2003). https://doi.org/10.1088/1464-4258/5/1/302
  106. He, H., Friese, M. J., Heckenberg, N. R. & Rubinsztein-Dunlop, H. Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. Phys. Rev. Lett. 75, 826–829 (1995). https://doi.org/10.1103/PhysRevLett.75.826
  107. Rubinsztein-Dunlop, H., Nieminen, T. , Friese, M. E. J. & Heckenberg, N. R. Optical trapping of absorbing particles. Adv. Quantum Chem. 30, 469–492 (1998). https://doi.org/10.1016/S0065-3276(08)60523-7
  108. Gahagan, K. & Swartzlander, G. A. Optical vortex trapping of particles. Opt. Lett. 21, 827–829 (1996). https://doi.org/10.1364/OL.21.000827
  109. Gahagan, K. & Swartzlander, G. A. Trapping of low-index microparticles in an optical vortex. J. Opt. Soc. Am. B 15, 524–534 (1998). https://doi.org/10.1364/JOSAB.15.000524
  110. Simpson, N. , McGloin, D., Dholakia, K., Allen, L. & Padgett, M. J. Optical tweezers with increased axial trapping efficiency. J. Mod. Opt. 45, 1943–1949 (1998). https://doi.org/10.1080/09500349808231712
  111. Simpson, N. , Allen, L. & Padgett, M. J. Optical tweezers and optical spanners with Laguerre Gaussian modes. J. Mod. Opt. 43, 2485–2491 (1996). https://doi.org/10.1080/09500349608230675
  112. O’Neil, A. & Padgett, M. J. Three-dimensional optical confinement of micron-sized metal particles and the decoupling of the spin and orbital angular momentum within an optical spanner. Opt. Commun. 185, 139–143 (2000). https://doi.org/10.1016/S0030-4018(00)00989-5
  113. Higurashi, E., Sawada, R. & Ito, T. Optically induced angular alignment of trapped birefringent micro-objects by linearly polarized light. Rev. E 59, 3676–3681 (1999). https://doi.org/10.1103/PhysRevE.59.3676
  114. Friese, M. J., Rubinsztein-Dunlop, H., Gold, J., Hagberg, P. & Hanstorp, D. Optically driven micromachine elements. Appl. Phys. Lett. 78, 547–549 (2001). https://doi.org/10.1063/1.1339995
  115. Paterson, L. et al. Controlled rotation of optically trapped microscopic particles. Science 292, 912–914 (2001). https://doi.org/10.1126/science.1058591
  116. Grier, D. A revolution in optical manipulation. Nature 424, 810–816 (2003). https://doi.org/10.1038/nature01935
  117. Bowman, R. & Padgett, M. J. Optical trapping and binding. Rep. Prog. Phys. 76, 026401 (2013). https://doi.org/10.1088/0034-4885/76/2/026401
  118. Padgett, M. & Bowman, R. Tweezers with a twist. photonics 5, 343–348 (2011). https://doi.org/10.1038/nphoton.2011.81
  119. Jack, Ng., Lin, Zh. & Chan, C. T. Theory of optical trapping by an optical vortex beam. Rev. Lett. 104, 103601 (2010). https://doi.org/10.1103/PhysRevLett.104.103601
  120. Yuehan, T. et al. Multi-trap optical tweezers based on composite vortex beams. Commun. 485, 126712 (2021). https://doi.org/10.1016/j.optcom.2020.126712
  121. Chun-Fu, K. & Chu, S.-Ch. Numerical study of the properties of optical vortex array laser tweezers. Express 21, 26418–26431 (2013). https://doi.org/10.1364/OE.21.026418
  122. Mokhun, I. Introduction to Linear Singular Optics. in Optical Correlation Techniques and Applications (ed. Angelsky, O.) 1–132 (Bellingham, SPIE Press PM168, 2007). https://doi.org/10.1117/3.714999.ch1
  123. Mokhun, I .I. Introduction to Linear Singular Optics (Chernivtsi National University, 2012) (In Russian)
  124. Angelsky, O. , Besaga, R. N. & Mokhun, I. I. Appearance of wave front dislocations under interference among beams with simple wave fronts. Proc. SPIE 3317, 97–100 (1997). https://doi.org/10.1117/12.295666
  125. O’Holleran, K., Padgett, M. & Dennis, M.  R. Topology of optical vortex lines formed by the interference of three, four, and five plane waves. Opt. Express 14, 3039–3044 (2006). https://doi.org/10.1364/OE.14.003039
  126. Xavier, J., Vyas, S., Senthilkumaran, P. & Joseph, J. Tailored complex 3D vortex lattice structures by perturbed multiples of three-plane waves. Opt. 51, 1872–1878 (2012). https://doi.org/10.1364/AO.51.001872
  127. Kapoor, A., Kumar, M., Senthilkumaran, P. & Joseph, J. Optical vortex array in spatially varying lattice. Commun. 365, 99–102 (2016). https://doi.org/10.1016/j.optcom.2015.11.074
  128. Xavier, J., Vyas, S., Senthilkumaran, P. & Joseph, J. Complex 3D vortex lattice formation by phase-engineered multiple beam interference. J. Opt. 2012, 863875 (2012). https://doi.org/10.1155/2012/863875
  129. Galvez, E. , Rojec, B. L., Beach, K. & Cheng, X. C-point Singularities in Poincaré Beams (2014). http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.712.1192&rep=rep1&type=pdf
  130. Mokhun, A. , Soskin, M. S. & Freund, I. Elliptic critical points in paraxial optical fields. Opt. Commun. 208, 223–253 (2002). https://doi.org/10.1016/S0030-4018(02)01585-7
  131. Mokhun, I., Galushko, Yu., Kharitonova, Ye., Viktorovskaya, Yu. & Khrobatin, R. Elementary heterogeneously polarized field modeling. Lett. 36, 2137–2139 (2011). https://doi.org/10.1364/OL.36.002137
  132. Angelsky, O. , Dominikov, N. N., Maksimyak, P. P. & Tudor, T. Experimental revealing of polarization waves. Appl. Opt. 38, 3112–3117 (1999). https://doi.org/10.1364/AO.38.003112
  133. Angelsky, O. , Hanson, S. G., Zenkova, C. Yu., Gorsky, M. P. & Gorodin’ska, N. V. On polarization metrology (estimation) of the degree of coherence of optical waves. Opt. Express, 17, 15623–15634 (2009). https://doi.org/10.1364/OE.17.015623
  134. Mokhun, I., Khrobatin, R. & Viktorovskaya, Ju. The behavior of the Poynting vector in the area of elementary polarization singularities. Appl. 37, 261–277 (2007).
  135. Khrobatin, R. & Mokhun, I. Shift of application point of angular momentum in the area of elementary polarization singularity. Opt. A Pure Appl. Opt. 10, 064015 (2008).
    https:/doi.org/10.1088/1464-4258/10/6/064015
  136. Angelsky, O. , Besaga, R. N., Mokhun, I. I., Soskin, M. S. & Vasnetsov, M. V. Singularities in vectoral fields. Proc. SPIE 3904, 40–55 (1999). https://doi.org/10.1117/12.370443
  137. Mokhun, I. , Arkhelyuk, A., Galushko, Yu., Kharitonova, Ye., & Viktorovskaya, Ju. Experimental analysis of the Poynting vector characteristics. Appl. Opt. 51, C158–C162 (2012). https://doi.org/10.1364/AO.51.00C158
  138. Mokhun, I., Arkhelyuk, A. , Galushko, Yu., Kharitonova, Ye. & Viktorovskaya, Yu. Angular momentum of an incoherent Gaussian beam. Appl. Opt. 53, B38–B42 (2014). https://doi.org/10.1364/AO.53.000B38
  139. Andronov, A. , Vitt, A. A. & Khaikin, S. E. Theory of Oscillators (Pergamon Press, 1966).
  140. Bekshaev, A. Spin angular momentum of inhomogeneous and transversely limited light beams. Proc. SPIE 6254, 56–63 (2006). https://doi.org/10.1117/12.679902
  141. O’Neil, A. , MacVicar, I., Allen, L. & Padgett, M. J. Intrinsic and extrinsic nature of the orbital angular momentum of a light beam. Phys. Rev. Lett. 88, 053601 (2002). https://doi.org/10.1103/PhysRevLett.88.053601
  142. Bekshaev, A. , Soskin, M. S. & Vasnetsov, M. V. Optical vortex symmetry breakdown and decomposition of the orbital angular momentum of light beams. J. Opt. Soc. Amer. A 20, 1635–1643 (2003). https://doi.org/10.1364/JOSAA.20.001635
  143. Belinfante, F. On the current and the density of the electric charge, the energy, the linear momentum and the angular momentum of arbitrary fields. Physica 7, 449 (1940). https://doi.org/10.1016/S0031-8914(40)90091-X
  144. Bliokh, K. , Dressel, J. & Nori, F. Conservation of the spin and orbital angular momenta in electromagnetism. New J. Phys. 16, 093037 (2014). https://doi.org/10.1088/1367-2630/16/9/093037
  145. Angelsky, O. et al. Investigation of optical currents in coherent and partially coherent vector fields. Opt. Express 19, 660–672 (2011). https://doi.org/10.1364/OE.19.000660
  146. Zenkova, C. Yu., Gorsky, M. , Maksimyak, P. P. & Maksimyak, A. P. Optical currents in vector fields. App. Opt. 50, 1105–1112 (2011) https://doi.org/10.1364/AO.50.001105
  147. Angelsky, V., Zenkova, C. Yu., Hanson, S. G. & Zheng, J. Extraordinary manifestation of evanescent wave in biomedical application. Front. Phys. 8, 159 (2020). https://doi.org/10.3389/fphy.2020.00159
  148. Angelsky, O., Bekshaev. A., Dragan, G., Maksimyak, P., Zenkova, C.Y. & Zheng, J., Structured light control and diagnostics using optical crystals. Phys. 9, 368 (2021). https://doi.org/10.3389/fphy.2021.715045
  149. Angelsky, O. Introduction to Singular Correlation Optics. (SPIE Press, 2019).
  150. Allen, L. & Padgett, M. Response to question #79. Does a plane wave carry spin angular momentum? Am. J. Phys. 70, 567–568 (2002). https://doi.org/10.1119/1.1456075
  151. Pfeifer, R. N. C., Nieminen, T. A., Heckenberg, N. R. & Rubinsztein-Dunlop, H. Optical tweezers and paradoxes in electromagnetism. Opt. 13, 044017 (2011). https://doi.org/10.1088/2040-8978/13/4/044017
  152. Stewart, A. M. Angular momentum of the electromagnetic field: the plane wave paradox resolved. J. Phys. 26, 635–641 (2005). https://doi.org/10.1088/0143-0807/26/4/008
  153. Bekshaev, A. “Spin” and “Orbital” Flows in A Circularly Polarized Paraxial Beam: Orbital Rotation Without Orbital Angular Momentum. https://arxiv.org/ftp/arxiv/papers/0908/0908.2526.pdf (2009).
  154. Bekshaev, A. & Vasnetsov, M. Vortex Flow of Light: “Spin” and “Orbital” Flows in a Circularly Polarized Paraxial Beam. in Twisted Photons. Applications of Light with Orbital Angular Momentum (eds. Torres, J. & Torner, L.) chapter 2 (Weinheim: Wiley-VCH, 2011). https://doi.org/10.1002/9783527635368.ch2
  155. Bekshaev, A. & Soskin, M. Transverse energy flows in vectorial fields of paraxial light beams. SPIE 6729, 67290G (2007). https://doi.org/10.1117/12.751952
  156. Dienerowitz, M., Mazilu, M. & Dholakia, K. Optical manipulation of nanoparticles: a review. Nanophotonics 2, 021875 (2008). https://doi.org/10.1117/1.2992045
  157. Gouesbet, G. T-matrix methods for electromagnetic structured beams: a commented reference database for the period 2014–2018. Quant. Spectrosc. Radiat. Transf. 230, 247–281 (2019). https://doi.org/10.1016/j.jqsrt.2019.04.004
  158. Nieminen, T. , Loke, V. L., Stilgoe, A. B., Heckenberg, N. R., & Rubinsztein-Dunlop, H. T-matrix method for modelling optical tweezers. J. Mod. Opt. 58, 528–544 (2011). https://doi.org/10.1080/09500340.2010.528565
  159. Bekshaev, A. , Bliokh, K. Y. & Nori, F. Mie scattering and optical forces from evanescent fields: A complex-angle approach. Opt. Express 21, 7082–7095 (2013). https://doi.org/10.1364/OE.21.007082
  160. Аngelsky, O., Bekshaev, A., Maksimyak, P., Maksimyak, A. & Hanson, S. Measurement of small light absorption in microparticles by means of optically induced rotation. Express 23, 7152–7163 (2015). https://doi.org/10.1364/OE.23.007152
  161. Bekshaev A. , Angelsky O. V., Sviridova S. V. & Zenkova C. Yu. Mechanical action of inhomogeneously polarized optical fields and detection of the internal energy flows. Adv. Opt. Technol. 2011, 723901 (2011). https://doi.org/10.1155/2011/723901
  162. Bekshaev, A. , Angelsky, O. V., Hanson, S. G. & Zenkova, C. Yu. Scattering of inhomogeneous circularly polarized optical field and mechanical manifestation of the internal energy flows. Phys. Rev. A 86, 023847-10 (2012). https://doi.org/10.1103/PhysRevA.86.023847
  163. Bohren, C. & Huffman, D. R. Absorption and Scattering of Light by Small Particles. (Wiley-VCH, 1983).
  164. Bekshaev, A. Subwavelength particles in an inhomogeneous light field: Optical forces associated with the spin and orbital energy flows. J. Opt. 15, 044004 (2013). https://doi.org/10.1088/2040-8978/15/4/044004
  165. Bliokh, K. Y., Bekshaev, A.Y. & Nori, F. Extraordinary momentum and spin in evanescent waves. Commun. 5, 3300 (2014). https://doi.org/10.1038/ncomms4300
  166. Liberal, I., Ederra, I., Gonzalo, R. & Ziolkowski, R. W. Electromagnetic force density in electrically and magnetically polarizable media. Rev. A 88, 053808 (2013). https://doi.org/10.1103/PhysRevA.88.053808
  167. Nieto-Vesperinas, M., Saenz, J. , Gomez-Medina, R. & Chantada, L. Optical forces on small magnetodielectric particles. Opt. Express 18, 11428–11443 (2010). https://doi.org/10.1364/OE.18.011428
  168. Canaguier-Durand, A., Cuche, A., Cyriaque, G. & Ebbesen, T.W. Force and torque on an electric dipole by spinning light fields. Rev. A 88, 033831 (2013). https://doi.org/10.1103/PhysRevA.88.033831
  169. Bliokh, K. , Bekshaev, A. Y. & Nori, F. Dual electromagnetism: helicity, spin, momentum and angular momentum. New J. Phy. 15, 033026 (2013). https://doi.org/10.1088/1367-2630/15/3/033026
  170. Xu, X. & Nieto-Vesperinas, M. Azimuthal imaginary Poynting momentum density. Phys. Rev. Lett. 123, 233902 (2019). https://doi.org/10.1103/PhysRevLett.123.233902
  171. Nieto-Vesperinas, M. & Xu, X. Reactive helicity and reactive power in nanoscale optics: Evanescent waves. Kerker conditions. Optical theorems and reactive dichroism. Rev. Res. 3, 043080 (2021). https://doi.org/10.1103/PhysRevResearch.3.043080
  172. Bekshaev, A., Kontush, S., Popov, A. & Van Grieken, R. Application of light beams with non-zero angular momentum in optical study of micrometer-size aerosol particles. SPIE 4403, 287–295 (2001). https://doi.org/10.1117/12.428282
  173. Bekshaev, A. Abraham-Based Momentum and Spin of Optical Fields Under Conditions of Total Reflection. https://arxiv.org/ftp/arxiv/papers/1710/1710.01561.pdf (2017).
  174. Angelsky, O. V. et al. Orbital rotation without orbital angular momentum: mechanical action of the spin part of the internal energy flow in light beams. Express 20, 3563–3571 (2012). https://doi.org/10.1364/OE.20.003563
  175. Angelsky, O.V. et al. Circular motion of particles suspended in a Gaussian beam with circular polarization validates the spin part of the internal energy flow. Express 20, 11351–11356 (2012). https://doi.org/10.1364/OE.20.011351
  176. Angelsky, O. V., Bekshaev, A.  Ya., Maksimyak, P.  P. & Polyanskii, P. V. Internal energy flows and optical trapping. Photonic  News 25, 20–21 (2014).
  177. Bekshaev, A. Y., Bliokh, K. Y. & Nori, F. Transverse spin and momentum in two-wave interference. Rev. X 5, 011039 (2015). https://doi.org/10.1103/PhysRevX.5.011039
  178. Antognozzi, M. et al. Direct measurements of the extraordinary optical momentum and transverse spin-dependent force using a nano-cantilever. Phys. 12, 731–735 (2016). https//doi.org/10.1038/nphys3732
  179. Bekshaev, A. Y. Dynamical characteristics of an electromagnetic field under conditions of total reflection. Opt. 2, 045604 (2018). https://doi.org/10.1088/2040-8986/aab035
  180. Bliokh, K. Y. & Nori, F. Transverse spin of a surface polariton. Rev. A 85, 061801 (2012). https://doi.org/10.1103/PhysRevA.85.061801
  181. Bliokh, K. Y., Smirnova, D. & Nori, F. Quantum spin Hall effect of light. Science 348, 1448–1451 (2015). https://doi.org/1126/science.aaa9519
  182. Bliokh, K. Y. Rodríguez-Fortuño, F. J., Nori, F. & Zayats, A. V. Spin–orbit interactions of light. Photonics 9, 796 (2015). https://doi.org/10.1038/nphoton.2015.201
  183. Skelton, S. E. et al. Evanescent wave optical trapping and transport of micro and nanoparticles on tapered optical fibers. Quant. Spectrosc. Radiat. Transf. 113, 2512–2520 (2012). https://doi.org/10.1016/j.jqsrt.2012.06.005
  184. Chang, S., Kim, J. T., Jo, J. H. & Lee, S. Optical force on a sphere caused by the evanescent field of a Gaussian beam; effects of multiple scattering. Opt. Commun. 139, 252–261 (1997). https://doi.org/10.1016/S0030-4018(97)00144-2
  185. Song, Y. G., Han, B. M. & Chang, S. Force of surface plasmon-coupled evanescent fields on Mie particles. Commun. 198, 7–19 (2001). https://doi.org/10.1016/S0030-4018(01)01484-5
  186. Angelsky, O. V. et al. Influence of evanescent wave on birefringent microplates. Express 25, 2299–2311 (2017). https://doi.org/10.1364/OE.25.002299
  187. Zenkova C. Yu., Ivanskyi, D. I. & Kiyashchuk, T. V. Optical torques and forces in birefringent microplate. Appl. 47, 1–11 (2017). https://doi.org/10.5277/oa170313
  188. Angelsky, O. V., Zenkova, C. Yu. & Ivansky, D. I. Mechanical action of the transverse spin momentum of an evanescent wave on gold nanoparticles in biological objects media. Optoelectron. Adv. Mater. 20, 217–226 (2018).
  189. Angelsky, O.V. et al. Controllying and manipulation of red blood cells by evanescent waves. Appl. 49, 597–611 (2019). https://doi.org/10.37190/oa190406
  190. Angelsky,  V. et al. Peculiarities of control of erythrocytes moving in an evanescent field. J. Biomed. Opt. 24, 055002 (2019). https://doi.org/10.1117/1.JBO.24.5.055002
  191. Angelsky, O.V. et al. Peculiarities of energy circulation in evanescent field. Application for red blood cells. Mem. Neural Netw. (Inf. Opt.) 28, 11–20 (2019). https://doi.org/10.3103/S1060992X19010028
  192. Berry, M. V. & Dennis, M. R. The optical singularities of birefringent dichroic chiral crystals. R. Soc. Lond. 459, 1261 (2003). https://doi.org/10.1098/rspa.2003.1155
  193. Bliokh, K. Y. & Nori, F. Characterizing optical chirality. Rev. A 83, 021803(R) (2011). https://doi.org/10.1103/PhysRevA.83.021803
  194. Desyatnikov, A. S., Sukhorukov, A. A. & Kivshar, Y. S. Azimuthons: spatially modulated vortex solitons. Rev. Lett. 95: 20, 203904 (2005). https://doi.org/10.1103/PhysRevLett.95.203904
  195. Kivshar, Y. S. Vortex solitons and rotating azimuthons in nonlinear media. Topologica 2, 005 (2009). https://doi.org/3731/topologica.2.005
  196. Bekshaev, A., Angelsky, O. & Hanson, S.G. Transformations and Evolution of Phase Singularities in Diffracted Optical Vortices. in Advances in Optics: Reviews, Book Series Vol. 1 (ed. Yurish, S. Y.) 345–385 (International Frequency Sensor Association (IFSA), Spain, 2018). http://www.sensorsportal.com/HTML/BOOKSTORE/Advances_in_Optics_Vol_1.pdf
  197. Bekshaev, A., Chernykh, A., Khoroshun, A. & Mikhaylovskaya, L. Singular skeleton evolution and topological reactions in edge-diffracted circular optical-vortex beams. Commun. 397, 72–83 (2017). https://doi.org/10.1016/j.optcom.2017.03.062
  198. Bekshaev, A., Chernykh, A., Khoroshun, A. & Mikhaylovskaya, L. Localization and migration of phase singularities in the edge-diffracted optical-vortex beams. Opt. 18 024011 (2016). https://doi.org/10.1088/2040-8978/18/2/024011
  199. Bekshaev, A., Khoroshun, A. & Mikhaylovskaya, L. Transformation of the singular skeleton in optical-vortex beams diffracted by a rectilinear phase step. Opt. 21, 084003 (2019). https://doi.org/10.1088/2040-8986/ab2c5b
  200. Bekshaev, A. Spin-orbit interaction of light and diffraction of polarized beams. Opt. 19, 085602 (2017). https://doi.org/10.1088/2040-8986/aa746a
  201. Fedoseyev, V. G. Spin-independent transverse shift of the centre of gravity of a reflected and of a refracted light beam. Commun. 193, 9–18 (2001). https://doi.org/10.1016/S0030-4018(01)01262-7
  202. Okuda, H. & Sasada, H. Significant deformations and propagation variations of Laguerre-Gaussian beams reflected and transmitted at a dielectric interface. Opt. Am. A: Opt. Image Sci. Vis. 25, 881–890 (2008). https://doi.org/10.1364/JOSAA.25.000881
  203. Bekshaev, A. Ya. & Popov, A. Yu. Method of light beam orbital angular momentum evaluation by means of space-angle intensity moments. J. Phys. Opt. 3, 249–257 (2002). https://doi.org/10.3116/16091833/3/4/249/2002
  204. Bekshaev, A. Ya. Oblique section of a paraxial light beam: criteria for azimuthal energy flow and orbital angular momentum. Opt. A Pure Appl. Opt. 11, 094003 (2009). https://doi.org/10.1088/1464-4258/11/9/094003
  205. Bekshaev, A. Ya. Improved theory for the polarization-dependent transverse shift of a paraxial light beam in free space. J. Phys. Opt. 12, 10–18 (2011). https://doi.org/10.3116/16091833/12/1/10/2011
  206. Bekshaev, A. Ya. Polarization-dependent transformation of a paraxial beam upon reflection and refraction: A real-space approach. Rev. A 85, 023842 (2012). https://doi.org/10.1103/PhysRevA.85.023842
  207. Bliokh, K. Y. & Aiello, A. Goos–Hänchen and Imbert–Fedorov beam shifts: an overview. J. Opt. 15, 014001 (2013). https://doi.org/10.1088/2040-8978/15/1/014001
Go to article

Authors and Affiliations

Oleg V. Angelsky
1 2
Aleksandr Ya. Bekshaev
3
Igor I. Mokhun
2
Mikhail V. Vasnetsov
4
Claudia Yu. Zenkova
1 2
Steen G. Hanson
5
Jun Zheng
1

  1. Taizhou Research Institute of Zhejiang University, Taizhou, China
  2. Chernivtsi National University, Chernivtsi, Ukraine
  3. Physics Research Institute, Odessa I. I. Mechnikov National University, Odessa, Ukraine
  4. Department of Optical Quantum Electronics, Institute of Physics of the NAS of Ukraine, Kyiv, Ukraine
  5. DTU Fotonik, Department of Photonics Engineering, DK-4000 Roskilde, Denmark
Download PDF Download RIS Download Bibtex

Abstract

New ways of calculating narrow microparticle size distributions based on using the Tikhonov and the modified Twomey methods for the laser diffraction technique are presented. These allow to have reduced the broadening (over-smoothing) of the result occurring in these methods for narrow distributions both singular and their sum. The calculated singular distributions and their distribution sum were then approximated by a Gaussian function and a bimodal Gaussian function, respectively, using the Levenberg-Marquardt method. The angular distribution of scattering power was measured for polystyrene particles with radii of 0.676 µm and 1.573 µm, and for their sum. The tests were carried out for linearly polarized He-Ne laser light scattered by a dilute aqueous suspension of these particles. The results obtained were compared with those obtained with the nanoDS instrument (CILAS). It turned out that using the way based on the Twomey method, the parameters of the narrow distribution sought could be determined quite well.
Go to article

Authors and Affiliations

Andrzej Pawlata
1
Bartosz Bartosewicz
1
ORCID: ORCID

  1. Institute of Optoelectronics, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

Optical waveguides (WGs) are widely used as interconnects in integrated optical circuits both for telecommunication and sensing applications. There are different kind of optical WG designs that offers different guiding parameters, opening a vast number of possibilities. A silica-titania (SiO2:TiO2) rib WG is discussed and examined by a numerical analysis in this article with a great emphasis on the analysis of bending losses and optimization. A modal analysis for different basic parameters of the WG is presented with a detailed wavelength-based modal analysis. Various potential fabrication methods are discussed, however, a sol-gel method and dip-coating deposition technique are proposed for the low-cost development of such WGs. Moreover, an approach towards minimizing the bending losses by adding an upper cladding layer on the rib WG is presented and described.
Go to article

Authors and Affiliations

Muhammad Shahbaz
1
ORCID: ORCID
Łukasz Kozlowski
1
Muhammad A. Butt
1
ORCID: ORCID
Ryszard Piramidowicz
1
ORCID: ORCID

  1. Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662 Warszawa, Poland
Download PDF Download RIS Download Bibtex

Abstract

Absorption of the below-bandgap solar radiation and direct pre-thermalizational impact of a hot carrier (HC) on the operation of a single-junction solar cell are ignored by the Shockley-Queisser theory. The detrimental effect of the HC is generally accepted only via the thermalization-caused heating of the lattice. Here, the authors demonstrate experimental evidence of the HC photocurrent induced by the below-bandgap 0.92 eV photon energy radiation in an industrial silicon solar cell. The carriers are heated both through direct free-carrier absorption and by residual photon energy remaining after the electron-hole pair generation. The polarity of the HC photocurrent opposes that of the conventional generation photocurrent, indicating that the total current across the p-n junction is contingent upon the interplay between these two currents. A model of current-voltage characteristics analysis allowing us to obtain a reasonable value of the HC temperature was also proposed. This work is remarkable in two ways: first, it contributes to an understanding of HC phenomena in photovoltaic devices, and second, it prompts discussion of the HC photocurrent as a new intrinsic loss mechanism in solar cells.
Go to article

Authors and Affiliations

Ihor Zharchenko
1
Jonas Gradauskas
2
Oleksandr Masalskyi
1 2
Aleksej Rodin
1

  1. Laboratory of Electronic Processes, Center for Physical Sciences and Technology, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania
  2. Department of Physics, Vilnius Gediminas Technical University, Saulėtekio Ave. 11, LT-10223 Vilnius, Lithuania
Download PDF Download RIS Download Bibtex

Abstract

A graphene/NPB structure with Re2O7 as an interfacial layer in the context of its potential use in the design of an organic light-emitting diode (OLED) is investigated. The X-ray photoelectron spectroscopy (XPS) study shows the formation of the Re2O7 phase on a monolayer graphene on quartz during thermal deposition in ultra-high vacuum (UHV). The ultraviolet photoelectron spectroscopy (UPS) study shows an enhancement of the work function of the graphene heterostructure after deposition of the Re2O7 layer up to 5.4 eV. The hole injection barrier between the Re2O7/graphene heterostructure and the N-bis-(1-naphthyl)-N,N-diphenyl-(1,1-biphenyl)-4,4-diamine (NPB) layer was estimated to be 0.35 eV, which is very promising for a good OLED performance.
Go to article

Authors and Affiliations

Paweł Krukowski
1
ORCID: ORCID
Michał Piskorski
1
ORCID: ORCID
Maciej Rogala
1
ORCID: ORCID
Paweł Dąbrowski
1
ORCID: ORCID
Iaroslav Lutsyk
1
ORCID: ORCID
Witold Kozłowski
1
ORCID: ORCID
Dorota A. Kowalczyk
1
ORCID: ORCID
Patryk Krempiński
1
ORCID: ORCID
Maxime Le Ster
1
ORCID: ORCID
Aleksandra Nadolska
1
ORCID: ORCID
Klaudia Toczek
1
ORCID: ORCID
Przemysław Przybysz
1
ORCID: ORCID
Rafał Dunal
2
ORCID: ORCID
Wojciech Ryś
1
ORCID: ORCID
Shankhanil Sarkar
3
ORCID: ORCID
Beata Łuszczyńska
4
ORCID: ORCID
Paweł J. Kowalczyk
1
ORCID: ORCID

  1. Department of Solid State Physics (member of National Photovoltaic Laboratory, Poland), Faculty of Physics and Applied Informatics, University of Lodz, ul. Pomorska 149/153, 90-236 Łódź, Poland
  2. Department of Solid State Physics (member of National Photovoltaic Laboratory, Poland), Faculty of Physics and Applied Informatics, University of Lodz, 149/153 Pomorska St., 90–236 Łódź, Poland
  3. Department of Physics, University of Kalyani, Kalyani-741235, Nadia, West Bengal, India
  4. Department of Molecular Physics (member of National Photovoltaic Laboratory, Poland), Lodz University of Technology, ul. Żeromskiego 116, 90-924 Łódź, Poland
Download PDF Download RIS Download Bibtex

Abstract

Titania dioxide (TiO2) layers were synthesized via the acid-catalysed sol-gel route using titania (IV) ethoxide, and then annealed at temperatures varying in the range of 150–700 °C. The research concerned the effect of annealing temperature on the structure of TiO2 layers, their surface morphology, and their optical properties. Further, X-ray diffractometry, and Raman spectroscopy were used to determine the structure of TiO2 layers. Scanning electron and atomic force microscopy were used to study the surface morphology of TiO2 layers. Transmittance, reflectance, absorption edge, and optical homogeneity were investigated by UV-VIS spectrophotometry, while the refractive index and thicknesses of TiO2 layers were measured using a monochromatic ellipsometer. Chromatic dispersion characteristics of the complex refractive index were determined using spectroscopic ellipsometry. Structural studies have shown that the TiO2 layers annealed at temperatures up to 300 °C are amorphous, while those annealed at temperatures exceeding 300 °C are polycrystalline containing only anatase nanocrystals with sizes increasing from 6 to 20 nm with the increase of the annealing temperature. Investigations on the surface morphology of TiO2 layers have shown that the surface roughness increases with the increase in annealing temperature. Spectrophotometric investigations have shown that TiO2 layers are homogeneous and the width of the indirect optical band gap varies with annealing temperature from 3.53 eV to 3.73 eV.

Go to article

Authors and Affiliations

Magdalena Zięba
1
ORCID: ORCID
Cuma Tyszkiewicz
1
ORCID: ORCID
Ewa Gondek
2
ORCID: ORCID
Katarzyna Wojtasik
2
ORCID: ORCID
Jacek Nizioł
3
ORCID: ORCID
Dominik Dorosz
4
ORCID: ORCID
Bartłomiej Starzyk
4
ORCID: ORCID
Patryk Szymczak
4
ORCID: ORCID
Wojciech Pakieła
5
ORCID: ORCID
Roman Rogoziński
1
ORCID: ORCID
Paweł Karasiński
1
ORCID: ORCID

  1. Department of Optoelectronics. Silesian University of Technology, ul. B. Krzywoustego 2, 44-100 Gliwice, Poland
  2. Department of Physics, Cracow University of Technology, ul. Podchorążych 1, 30-084 Kraków, Poland
  3. Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland
  4. Faculty of Materials Science and Ceramics AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland
  5. Department of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

External light outcoupling structures provide a cost-effective and highly efficient solution for light extraction in organic light-emitting diodes. Among them, different microtextures, mainly optimized for devices with isotopically oriented emission dipoles, have been proposed as an efficient light extraction solution. In the paper, the outcoupling for a preferential orientation of emission dipoles is studied for the case of a red bottom-emitting organic light-emitting diode. Optical simulations are used to analyse the preferential orientation of dipoles in combination with three different textures, namely hexagonal array of sine-textures, three-sided pyramids, and random pyramids. It is shown that while there are minimal differences between the optimized textures, the highest external quantum efficiency of 51% is predicted by using the three-sided pyramid texture. Further improvements, by employing highly oriented dipole sources, are examined. In this case, the results show that the top outcoupling efficiencies can be achieved with the same texture shape and size, regardless of the preferred orientation of the emission dipoles. Using an optimized three-sided pyramid in combination with ideally parallel oriented dipoles, an efficiency of 62% is achievable. A detailed analysis of the optical situation inside the glass substrate, dominating external light outcoupling, is presented. Depicted results and their analysis offer a simplified further research and development of external light extraction for organic light-emitting devices with highly oriented dipole emission sources.
Go to article

Bibliography

  1. Song, J., Lee, H., Jeong, E.͏͏ G., Choi, K.͏ C. & Yoo, S. Organic light-emitting diodes: pushing toward the limits and beyond. Adv. Mater. 32, 1907539 (2020). https://doi.org/10.1002/adma.201907539
  2. Yin, Y., Ali, M. U., Xie, W., Yang, H. & Meng, H. Evolution of white organic light-emitting devices: from academic research to lighting and display applications. Mater. Chem. Front. 3, 970–1031 (2019). https://doi.org/10.1039/C9QM00042A
  3. Pode, R. Organic light emitting diode devices: An energy efficient solid state lighting for applications. Renew. Sust. Energy Rev. 133, 110043 (2020). https://doi.org/10.1016/j.rser.2020.110043
  4. Chang, Y. & Lu, Z. White organic light-emitting diodes for solid-state lighting. J. Disp. Technol. 9, 459–468 (2013). https://doi.org/10.1109/JDT.2013.2248698
  5. Reineke, S., Thomschke, M., Lüssem, B. & Leo, K. White organic light-emitting diodes: Status and perspective. Rev. Mod. Phys. 85, 1245–1293 (2013). https://doi.org/10.1103/RevModPhys.85.1245
  6. Hong, G. et al. A brief history of OLEDS—emitter development and industry milestones. Adv. Mater. 33, 2005630 (2021). https://doi.org/10.1002/adma.202005630
  7. Adachi, C., Xie, G., Reineke, S. & Zysman-Colman, E. Editorial: recent advances in thermally activated delayed fluorescence materials. Front. Chem. 8, 625910 (2020). https://doi.org/10.3389/fchem.2020.625910
  8. Forrest, S. R., Bradley, D. D. C. & Thompson, M. E. Measuring the efficiency of organic light-emitting devices. Adv. Mater. 15, 1043–1048 (2003). https://doi.org/10.1002/adma.200302151
  9. Furno, M., Meerheim, R., Hofmann, S., Lüssem, B. & Leo, K. Efficiency and rate of spontaneous emission in organic electroluminescent devices. Phys. Rev. B 85, 115205 (2012). https://doi.org/10.1103/PhysRevB.85.115205
  10. Meerheim, R., Furno, M., Hofmann, S., Lüssem, B. & Leo, K. Quantification of energy loss mechanisms in organic light-emitting diodes. Appl. Phys. Lett. 97, 253305 (2010). https://doi.org/10.1063/1.3527936
  11. Salehi, A., Fu, X., Shin, D.-H. & So, F. Recent advances in OLED optical design. Adv. Funct. Mater. 29, 1808803 (2019). https://doi.org/10.1002/adfm.201808803
  12. Gather, M.C. & Reineke, S. Recent advances in light outcoupling from white organic light-emitting diodes. J. Photonics Energy 5, 057607 (2015). https://doi.org/10.1117/1.JPE.5.057607
  13. Möller, S. & Forrest, S. R. Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays. J. Appl. Phys. 91, 3324–3327 (2002). https://doi.org/10.1063/1.1435422
  14. Greiner, H. Light extraction from Organic Light Emitting Diode substrates: simulation and experiment. Jpn. J. Appl. Phys. 46, 4125 (2007). https://doi.org/10.1143/JJAP.46.4125
  15. Bae, H., Kim, J.͏͏ S. & Hong, C. Simulation for light extraction efficiency of OLEDs with spheroidal microlenses in hexagonal array. Opt. Commun. 415, 168–176 (2018). https://doi.org/10.1016/j.optcom.2018.01.044
  16. Zhou, J.-G., Hua, X.-C., Huang, C.-C., Sun, Q. & Fung, M.-K. Ideal microlens array based on polystyrene microspheres for light extraction in organic light-emitting diodes. Org. Electron. 69, 348–353 (2019). https://doi.org/10.1016/j.orgel.2019.03.051
  17. Zhai, G., Zhu, W., Huang, L., Yi, C. & Ding, K. Enhanced light extraction from green organic light-emitting diodes by attaching a high-haze random-bowls textured optical film. J. Phys. D: Appl. Phys. 53, 435101 (2020). https://doi.org/10.1088/1361-6463/ab9fc3
  18. Yen, J.-H., Wang, Y.-J., Hsieh, C.-A., Chen, Y.-C. & Chen, L.-Y. Enhanced light extraction from organic light-emitting devices through non-covalent or covalent polyimide–silica light scattering hybrid films. J. Mater. Chem. C 8, 4102–4111 (2020). https://doi.org/10.1039/C9TC06449D
  19. Gasonoo, A. et al. Outcoupling efficiency enhancement of a bottom-emitting OLED with a visible perylene film. Opt. Express 28, 26724–26732 (2020). https://doi.org/10.1364/OE.397789
  20. Song, J. et al. Lensfree OLEDs with over 50% external quantum efficiency via external scattering and horizontally oriented emitters. Nat. Commun. 9, 3207 (2018). https://doi.org/10.1038/s41467-018-05671-x
  21. Tu, T. T. K. et al. Enhancement of light extraction from Organic Light-Emitting Diodes by SiO2 nanoparticle-embedded phase separated PAA/PI polymer blends. Mol. Cryst. Liq. Cryst. 686, 55–62 (2019). https://doi.org/10.1080/15421406.2019.1648036
  22. Kovačič, M. et al. Coupled optical modeling for optimization of Organic Light-Emitting Diodes with external outcoupling structures. ACS Photonics 5, 422–430 (2018). https://doi.org/10.1021/acsphotonics.7b00874
  23. Kovačič, M. et al. Combined optical model for micro-structured organic light emitting diodes. Inf. MIDEM 46, 167–275 (2017).
  24. Kovačič, M., Jošt, M., Bokalič, M. & Lipovšek, B. Sklopljeno optično modeliranje sodobnih optoelektronskih gradnikov. Elektrotehniski Vestn. 87, 223–234 (2020). http://www.dlib.si/stream/URN:NBN:SI:doc-2H1046ZZ/1ab9d4a8-6aab-40c3-abb5-9d826ff65672/PDF (in Slovene)
  25. Kovačič, M. et al. Analysis and optimization of light outcoupling in OLEDs with external hierarchical textures. Opt. Express 29, 23701–23716 (2021). https://doi.org/10.1364/OE.428021
  26. Lipovšek, B., Krč, J. & Topič, M. Microtextured light-management foils and their optimization for planar organic and perovskite solar cells. IEEE J. Photovolt. 8, 783–792 (2018). https://doi.org/10.1109/JPHOTOV.2018.2810844
  27. Jošt, M. et al. Efficient light management by textured nanoimprinted layers for perovskite solar cells. ACS Photonics 4, 1232–1239 (2017). https://doi.org/10.1021/acsphotonics.7b00138
  28. Schmidt, T. D. et al. Emitter orientation as a key parameter in Organic Light-Emitting Diodes. Phys. Rev. Appl. 8, 037001 (2017). https://doi.org/10.1103/PhysRevApplied.8.037001
  29. Hofmann, A., Schmid, M. & Brütting, W. The many facets of molecular orientation in organic optoelectronics. Adv. Opt. Mater. 9, 2101004 (2021). https://doi.org/10.1002/adom.202101004
  30. Kim, K.-H. & Kim, J.-J. Origin and control of orientation of phosphorescent and TADF dyes for high‐efficiency OLEDs. Adv. Mater. 30, 1705600 (2018). https://doi.org/10.1002/adma.201705600
  31. Yokoyama, D. Molecular orientation in small-molecule organic light-emitting diodes. J. Mater. Chem. 21, 19187–19202 (2011). https://doi.org/10.1039/C1JM13417E
  32. Schwab, T. et al. Highly efficient color stable inverted white top-emitting OLEDs with ultra-thin wetting layer top electrodes. Adv. Opt. Mater. 1, 707–713 (2013) https://doi.org/10.1002/adom.201300241
  33. Schwab, T., Schubert, S., Müller-Meskamp, L., Leo, K. & Gather, M. C. Eliminating micro-cavity effects in white top-emitting OLEDs by ultra-thin metallic top electrodes. Adv. Opt. Mater. 1, 921–925 (2013). https://doi.org/10.1002/adom.201300392
  34. Zhang, W. et al. Rough glass by 3d texture transfer for silicon thin film solar cells. Phys. Status Solidi C 7, 1120–1123 (2010). https://doi.org/10.1002/pssc.200982773
  35. Escarré, J., Söderström, K., Battaglia, C., Haug, F.-J. & Ballif, C. High fidelity transfer of nanometric random textures by UV embossing for thin film solar cells applications. Sol. Energy Mater. Sol. Cells 95, 881–886 (2011). https://doi.org/10.1016/j.solmat.2010.11.010
  36. Meier, M. et al. UV nanoimprint for the replication of etched ZnO:Al textures applied in thin-film silicon solar cells. Prog. Photovolt. Res. Appl. 22, 1226–1236 (2014). https://doi.org/10.1002/pip.2382
  37. Xiao, L., Su, S.-J., Agata, Y., Lan, H. & Kido, J. Nearly 100% internal quantum efficiency in an organic blue-light electro-phosphorescent device using a weak electron transporting material with a wide energy gap. Adv. Mater. 21, 1271–1274 (2009). https://doi.org/10.1002/adma.200802034
  38. Dias, F. B. et al. Triplet harvesting with 100% efficiency by way of thermally activated delayed fluorescence in charge transfer OLED emitters. Adv. Mater. 25, 3707–3714 (2013). https://doi.org/10.1002/adma.201300753
  39. Zhang, Q. et al. Nearly 100% internal quantum efficiency in undoped electroluminescent devices employing pure organic emitters. Adv. Mater. 27, 2096–2100 (2015). https://doi.org/10.1002/adma.201405474
  40. Neyts, K. A. Simulation of light emission from thin-film microcavities. J. Opt. Soc. Am. A 15, 962–971 (1998). https://doi.org/10.1364/JOSAA.15.000962
  41. Kovačič, M. Effect of dipole position and orientation on light extraction for red OLEDs on periodically corrugated substrate – FEM simulations study. Inf. MIDEM 51, 73–84 (2021). https://doi.org/10.33180/InfMIDEM2021.105
  42. Lüder, H. & Gerken, M. FDTD modelling of nanostructured OLEDs: analysis of simulation parameters for accurate radiation patterns. Opt. Quantum Electron. 51, 139 (2019). https://doi.org/10.1007/s11082-019-1838-4
  43. Lipovšek, B., Krč, J. & Topič, M. Optical model for thin-film photovoltaic devices with large surface textures at the front side. Inf. MIDEM 41, 264–271 (2011). http://www.midem-drustvo.si/Journal%20papers/MIDEM_41%282011%294p264.pdf
  44. MATLAB – MathWorks (2022). https://www.mathworks.com/products/matlab.html
Go to article

Authors and Affiliations

Milan Kovačič
1
ORCID: ORCID

  1. Faculty of Electrical Engineering, University of Ljubljana, Tržaška cesta 25, 1000 Ljubljana, Slovenia

Authors and Affiliations

Piotr Martyniuk
ORCID: ORCID
Sarath D. Gunapala
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a comprehensive look at the perspectives on the use of THz in digital communication systems. The publication aims to focus on arguments that justify a significant increase in the frequency of radio links and their integration with fibre-based networks. Comparison of THz links with their microwave and optical counterparts is discussed from basic physical limitations to technological constraints. Main attention is paid to the available channel capacity resulting from its bandwidth and signal-to-noise ratio. The short final discussion is about technology platforms that seem to be crucial to the availability of suitable THz sources. According to the author, the biggest advantage of using bands in the range of several hundred GHz for a digital data transmission is their use for mobile communication over short distances, as well as for broadband indoor links. However, these applications require a development of compact electronic THz sources with low noise and power reaching single watts. This is beyond the range of the most popular silicon-based technology platform, although a significant progress can be expected with the development of technologies based on wide bandgap semiconductors. Fibre optic connections remain the unquestioned leader in communication over long distances and permanent links.

Go to article

Authors and Affiliations

J. Marczewski
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a dual-band plasmonic solar cell. The proposed unit structure gathers two layers, each layer consists of a silver nanoparticle deposited on a GaAs substrate and covered with an ITO layer, It reveals two discrete absorption bands in the infra-red part of the solar spectrum. Nanoparticle structures have been used for light-trapping to increase the absorption of plasmonic solar cells. By proper engineering of these structures, resonance frequencies and absorption coefficients can be controlled as it will be elucidated. The simulation results are achieved using CST Microwave Studio through the finite element method. The results indicate that this proposed dual-band plasmonic solar cell exhibits an absorption bandwidth, defined as the full width at half maximum, reaches 71 nm. Moreover, It can be noticed that by controlling the nanoparticle height above the GaAs substrate, the absorption peak can be increased to reach 0.77.

Go to article

Authors and Affiliations

Ashraf A. M. Khalaf
ORCID: ORCID
M. D. Gaballa

Authors and Affiliations

Rana M. Nassar
1
Ashraf A. M. Khalaf
1
ORCID: ORCID
Ghada M. El-Banby
2
Fathi E. Abd El-Samie
3 4
Aziza I. Hussein
5
ORCID: ORCID
Walid El-Shafai
3 6

  1. Department of Electrical Engineering, Faculty of Engineering, Minia University, Minia 61111, Egypt
  2.   Department of Industrial Electronics and Control Engineering, Faculty of Electronic Engineering, Menoufia University, Menouf 32952, Egypt
  3. Department of Electronics and Electrical Communications Engineering, Faculty of Electronic Engineering, Menoufia University, Menouf 32952, Egypt
  4. Department of Information Technology, College of Computer and Information Sciences, Princess Nourah Bint Abdurrahman University, Riyadh 84428, Saudi Arabia
  5. Electrical and Computer Engineering Department, Effat University, Jeddah, Kingdom of Saudi Arabia
  6.  Security Engineering Laboratory, Department of Computer Science, Prince Sultan University, Riyadh 11586, Saudi Arabia
Download PDF Download RIS Download Bibtex

Abstract

This work summarises investigations focused on the photoanode impact on the photovoltaic response of dye-sensitized solar cells. This is a comparison of the results obtained by the authors’ research team with literature data. The studies concern the effect of the chemical structure of the applied dye, TiO2 nanostructure, co-adsorbents addition, and experimental conditions of the anode preparation. The oxide substrates were examined using a scanning electron microscope to determine the thickness and structure of the material. The TiO2 substrates with anchored dye molecules were also tested for absorption properties in the UV-Vis light range, largely translating into current density values. Photovoltaic parameters of the fabricated devices with sandwich structure were obtained from current-voltage measurements. During tests conducted with the N719 dye, it was found that devices containing an 8.4 µm thick oxide semiconductor layer had the highest efficiency (5.99%). At the same time, studies were carried out to determine the effect of the solvent and it was found that the best results were obtained using an ACN : tert-butanol mixture (5.46%). Next, phenothiazine derivatives (PTZ-1–PTZ-6) were used to prepare the devices; among the prepared solar cells, the devices containing PTZ-2 and PTZ-3 had the highest performance (6.21 and 6.22%, respectively). Two compounds designated as Th-1 and M-1 were used to prepare devices containing a dye mixture with N719.
Go to article

Bibliography

  1. Kishore Kumar, D. et al. Functionalized metal oxide nanoparticles for efficient dye-sensitized solar cells (DSSCs): A review. Sci. Energy Technol. 3, 472–481 (2020). https://doi.org/10.1016/j.mset.2020.03.003
  2. Gerischer, H., Michel-Beyerle, M. E., Rebentrost, F. & Tributsch, H. Sensitization of charge injection into semiconductors with large band gap. Acta 13, 1509–1515 (1968). https://doi.org/10.1016/0013-4686(68)80076-3
  3. Tsubomura, H., Matsumura M., Nomura, Y. & Amamiya, T. Dye senstized Zinc oxide: aqueous electrolyte: platinumphotocell. Nature 261, 402–403 (1976). https://doi.org/10.1038/261402a0
  4. O’Regan, B. & Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 Nature 353, 737–740 (1991). https://doi.org/10.1038/353737a0
  5. Ji, J.-M., Zhou, H., Eom, Y. K., Kim, C. H. & Kim, H. K. 14.2% efficiency dye-sensitized solar cells by co-sensitizing novel thieno[3,2-b]indole-based organic dyes with a promising porphyrin sensitizer. Energy Mater. 10, 1–12 (2020). https://doi.org/10.1002/aenm.202000124
  6. Gnida, P., Libera, M., Pająk, A. & Schab-Balcerzak, E. Examination of the effect of selected factors on the photovoltaic response of dye-sensitized solar cells. Energy Fuels 34, 14344–14355 (2020). https://doi.org/10.1021/acs.energyfuels.0c02188
  7. Selvaraj, P. et al. Enhancing the efficiency of transparent dye-sensitized solar cells using concentrated light. Energy Mater. Sol. Cells 175, 29–34 (2018). https://doi.org/10.1016/j.solmat.2017.10.006
  8. Baglio, V., Girolamo, M., Antonucci, V. & Aricò, A. S. Influence of TiO2 film thickness on the electrochemical behaviour of dye-sensitized solar cells. Int. J. Sci. 6, 3375–3384 (2011).
  9. Zhang, H. et al. Effects of TiO2 film thickness on photovoltaic properties of dye-sensitized solar cell and its enhanced performance by graphene combination. Mater. Res. Bull. 49, 126–131 (2014). https://doi.org/10.1016/j.materresbull.2013.08.058
  10. Madurai Ramakrishnan, V. et al. Transformation of TiO2 nanoparticles to nanotubes by simple solvothermal route and its performance as dye-sensitized solar cell (DSSC) photoanode. J. Hydrog. 45, 15441–15452 (2020). https://doi.org/10.1016/j.ijhydene.2020.04.021
  11. Lee, S. et al. Two-step sol-gel method-based TiO2 nanoparticles with uniform morphology and size for efficient photo-energy conversion devices. Chem. Mater. 22, 1958–1965 (2010). https://doi.org/10.1021/cm902842k
  12. Gnida, P. et al. Impact of TiO2 nanostructures on dye-sensitized solar cells performance. Materials 14, 13–15 (2021). https://doi.org/10.3390/ma14071633
  13. Slodek, A. et al. New benzo [ h ] quinolin-10-ol derivatives as co-sensitizers for DSSCs. Materials 14, 1–19 (2021) https://doi.org/10.3390/ma14123386
  14. Lee, K. M. et al. Efficient and stable plastic dye-sensitized solar cells based on a high light-harvesting ruthenium sensitizer. J. Mater. Chem. 19, 5009–5015 (2009). https://doi.org/10.1039/b903852c
  15. Kumar, V., Gupta, R. & Bansal, A. Role of chenodeoxycholic acid as co-additive in improving the efficiency of DSSCs. Sol. Energy 196, 589–596 (2020) https://doi.org/10.1016/j.solener.2019.12.034
  16. Ko, S. H. et al. Nanoforest of hydrothermally grown hierarchical ZnO nanowires for a high efficiency dye-sensitized solar cell. Nano Lett. 11, 666–671 (2011). https://doi.org/10.1021/nl1037962
  17. Lee, K.-M. Effects of co-adsorbate and additive on the performance of dye-sensitized solar cells: A photophysical study. Sol. Energy Mater. Sol. Cells 91, 1426–1431 (2007). https://doi.org/10.1016/j.solmat.2007.03.009
  18. Wang, X. et al. Enhanced performance of dye-sensitized solar cells based on a dual anchored diphenylpyranylidene dye and N719 co-sensitization. J. Mol. Struct. 1206, 127694 (2020). https://doi.org/10.1016/j.molstruc.2020.127694
  19. Kula, S. et al. Effect of thienyl units in cyanoacrylic acid derivatives toward dye-sensitized solar cells. Photochem. Photobiol. B, Biol. 197, 111555 (2019). https://doi.org/10.1016/j.jphotobiol.2019.111555
  20. Kotowicz, S. et al. Photoelectrochemical and thermal characteri-zation of aromatic hydrocarbons substituted with a dicyanovinyl unit. Pigm. 180, 108432 (2020). https://doi.org/10.1016/j.dyepig.2020.108432
  21. Fabiańczyk, A. et al. Effect of heterocycle donor in 2-cyanoacrylic acid conjugated derivatives for DSSC applications. Energy 220, 1109–1119 (2021). https://doi.org/10.1016/j.solener.2020.08.069
  22. Luo, J. et al. Co-sensitization of dithiafulvenyl-phenothiazine based organic dyes with N719 for efficient dye-sensitized solar cells. Acta 211, 364–374 (2016). https://doi.org/10.1016/j.electacta.2016.05.175
  23. Wu, Z. S. et al. New organic dyes with varied arylamine donors as effective co-sensitizers for ruthenium complex N719 in dye sensitized solar cells. Power Sources 451, 227776 (2020). https://doi.org/10.1016/j.jpowsour.2020.227776
  24. Dang Quang, L. N., Kaliamurthy, A. K. & Hao, N. H. Co-sensitization of metal based N719 and metal free D35 dyes: An effective strategy to improve the performance of DSSC. Mater. 111, 110589 (2021). https://doi.org/10.1016/J.OPTMAT.2020.110589
  25. Lee, H., Kim, J., Kim, D. Y. & Seo, Y. Co-sensitization of metal free organic dyes in flexible dye sensitized solar cells. Electron. 52, 103–109 (2018). https://doi.org/10.1016/j.orgel.2017.10.003
  26. Magne, C., Urien, M. & Pauporté, T. Enhancement of photovoltaic performances in dye-sensitized solar cells by co-sensitization with metal-free organic dyes. RSC Adv. 3, 6315–6318 (2013). https://doi.org/10.1039/c3ra41170b
  27. Kovash Jr., C. S., Hoefelmeyer, J. D. & Logue, B. A. TiO 2 compact layers prepared by low temperature colloidal synthesis and deposition for high performance dye-sensitized solar cells. Acta 67, 18–23 (2012). https://doi.org/10.1016/j.electacta.2012.01.092
  28. Cha, S. I. et al. Dye-sensitized solar cells on glass paper: TCO-free highly bendable dye-sensitized solar cells inspired by the traditional Korean door structure. Energy Environ. Sci. 5, 6071–6075 (2012). https://doi.org/10.1039/c2ee03096a
  29. Cataldo, F. A revision of the Gutmann donor numbers of a series of phosphoramides including TEPA. Chem. Bull. 4, 92–97 (2015). https://doi.org/10.17628/ECB.2015.4.92
  30. Slodek, A. et al. Dyes based on the D/A-acetylene linker-phenothiazine system for developing efficient dye-sensitized solar cells. Mater. Chem. C 7, 5830–5840 (2019). https://doi.org/10.1039/C9TC01727E
  31. Slodek, A. et al. Investigations of new phenothiazine-based com­pounds for dye-sensitized solar cells with theoretical insight. Materials 13, 2292 (2020). https://www.mdpi.com/1996-1944/13/10/2292
  32. Li, X., Wang, Y., Liu, Y. & Ge, W. Green, room-temperature, fast route for NH4Yb2F7:Tm3+ nanoparticles and their blue upconversion luminescence properties. Mater.111, 110605 (2021). https://doi.org/10.1016/j.optmat.2020.110605
  33. Li, S. et al. Comparative studies on the structure-performance relationships of phenothiazine-based organic dyes for dye-sensitized solar cells. ACS Omega 6, 6817–6823 (2021). https://doi.org/10.1021/acsomega.0c05887
  34. Zhang, C., Wang, S. & Li, Y. Phenothiazine organic dyes containing dithieno[3,2-b:2′,3′-d]pyrrole (DTP) units for dye-sensitized solar cells. Energy 157, 94–102 (2017). https://doi.org/10.1016/j.solener.2017.08.012
  35. Duvva, N., Eom, Y. K., Reddy, G., Schanze, K. S. & Giribabu, L. Bulky phenanthroimidazole-phenothiazine D-?-A based organic sensitizers for application in efficient dye-sensitized solar cells. ACS Appl. Energy Mater. 3, 6758–6767 (2020). https://doi.org/10.1021/acsaem.0c00892
  36. Huang, Z.-S., Meier, H. & Cao, D. Phenothiazine-based dyes for efficient dye-sensitized solar cells. Mater. Chem. C 4, 2404–2426 (2016). https://doi.org/10.1039/c5tc04418a
  37. Althagafi, I. & El-Metwaly, N. Enhancement of dye-sensitized solar cell efficiency through co-sensitization of thiophene-based organic compounds and metal-based N-719. J. Chem. 14, 103080 (2021). https://doi.org/10.1016/J.ARABJC.2021.103080
  38. Wu, Z., Wei, Y., An, Z., Chen, X. & Chen, P. Co-sensitization of N719 with an organic dye for dye-sensitized solar cells application. Korean Chem. Soc. 35, 1449–1454 (2014). https://doi.org/10.5012/bkcs.2014.35.5.1449
  39. Xu, Z. et al. DFT/TD-DFT study of novel T shaped phenothiazine-based organic dyes for dye-sensitized solar cells applications. Acta A Mol. Biomol. Spectrosc. 212, 272–280 (2019). https://doi.org/10.1016/J.SAA.2019.01.002
  40. Afolabi, S. O. et al. Design and theoretical study of phenothiazine-based low bandgap dye derivatives as sensitizers in molecular photovoltaics. Quantum Electron. 52, 1–18 (2020). https://doi.org/10.1007/s11082-020-02600-5
  41. Arunkumar, A., Shanavas, S. & Anbarasan, P. M. First-principles study of efficient phenothiazine-based D–π–A organic sensitizers with various spacers for DSSCs. Comput. Electron. 17,
    1410–1420 (2018). https://doi.org/10.1007/s10825-018-1226-5
  42. Nath, N. C. D., Lee, H. J. Choi, W.-Y. & Lee, J.-J. Electrochemical approach to enhance the open-circuit voltage (Voc) of dye-sensitized solar cells (DSSCs). Acta 109, 39–45 (2013). https://doi.org/10.1016/J.ELECTACTA.2013.07.057
Go to article

Authors and Affiliations

Paweł Gnida
1
ORCID: ORCID
Aneta Slodek
2
ORCID: ORCID
Ewa Schab-Balcerzak
2 1
ORCID: ORCID

  1. Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska St., 41-819 Zabrze, Poland
  2. Institute of Chemistry, University of Silesia, 9 Szkolna St., 40-006 Katowice, Poland
Download PDF Download RIS Download Bibtex

Abstract

Cellular mobile communication networks are experiencing an important evolution with the emerging deployment of 5G networks and the successive decline in the use of previous generations in the years to come. In parallel, policies promoting ecological transition are gaining social impact and economic interest and this seems to be the trend in the near future. In the telecommunications market, the shift between two dominant generations could be an important opportunity to introduce renewable energy sources to green the sector, reducing the carbon footprint of the world-wide extended activity. This work analyses the current situation and provides an insight into the possibilities to incorporate renewable energy supplies, specifically photovoltaics (as it seems to be the most promising among clean electric sources), perhaps combined with small wind turbines in off-grid systems. Paper also compares the characteristics of standard facilities in Spain and Poland, two different European countries in terms of weather and insolation hours.
Go to article

Authors and Affiliations

Iñigo Cuiñas
1
ORCID: ORCID
Katarzyna Znajdek
2
ORCID: ORCID
Maciej Sibiński
2
ORCID: ORCID

  1. Dept. of Signal Theory and Communications, Universidade de Vigo, atlanTTic Research Center, 36310 Vigo, Spain
  2. Dept. of Semiconductor and Optoelectronic Devices, Lodz University of Technology, Wólczańska 211–215, 90-001 Lodz, Poland
Download PDF Download RIS Download Bibtex

Abstract

Thermo-optic properties enhancement of the bi-stable temperature threshold sensors based on a partially filled photonic crystal fiber was reported. Previously tested transducers filled with a selected group of pure n-alkanes had in most cases differences between switching ON and OFF states. Therefore, the modification of filling material by using additional crystallization centers in the form of gold nanoparticles was applied to minimize this undesirable effect. The evaluation of the thermodynamic properties of pentadecane and its mixtures with 14 nm spherical Au nanoparticles based on the differential scanning calorimetry measurements was presented. Optical properties analysis of sensors prepared with these mixtures has shown that they are bounded with refractive index changes of the filling material. Particular sensor switches ON before melting process begins and switches OFF before crystallization starts. Admixing next group of n-alkanes with these nanoparticles allows to design six sensors transducers which change ON and OFF states at the same temperature. Thus, the transducers with a wider temperature range for fiber-optic multi-threshold temperature sensor tests will be used.

Go to article

Authors and Affiliations

N. Przybysz
P. Marć
E. Tomaszewska
J. Grobelny
L.R. Jaroszewicz
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

In this paper, we present the electrical and electro-optical characterizations of an InAs/GaSb type-2 superlattice barrier photodetector operating in the full longwave infrared spectral domain. The fabricated detectors exhibited a 50% cut-off wavelength around 14 μm at 80 K and a quantum efficiency slightly above 20%. The dark current density was of 4.6 × 10 2 A/cm2 at 80 K and a minority carrier lateral diffusion was evaluated through dark current measurements on different detector sizes. In addition, detector spectral response, its dark current-voltage characteristics and capacitance-voltage curve accompanied by electric field simulations were analyzed in order to determine the operating bias and the dark current regimes at different biases. Finally, dark current simulations were also performed to estimate a minority carrier lifetime by comparing experimental curves with simulated ones.

Go to article

Authors and Affiliations

R. Alchaar
J. B. Rodriguez
L. Höglund
S. Naureen
E. Costard
P. Christol
Download PDF Download RIS Download Bibtex

Abstract

In perovskite solar cells, series of symmetrical and asymmetrical imino-naphthalimides were tested as hole-transporting materials. The compounds exhibited high thermal stability at the temperature of the beginning of thermal decomposition above 300 °C. Obtained imino-naphthalimides were electrochemically active and their adequate energy levels confirm the application possibility in the perovskite solar cells. Imino-naphthalimides were absorbed with the maximum wavelength in the range from 331 nm to 411 nm and emitted light from the blue spectral region in a chloroform solution. The presented materials were tested in the perovskite solar cells devices with a construction of FTO/b-TiO2/m-TiO2/perovskite/ HTM/Au. For comparison, the reference perovskite cells were also performed (without hole-transporting materials layer). Of all the proposed materials tested as hole-transporting materials, the bis-(imino-naphthalimide) containing in core the triphenylamine structure showed a power conversion efficiency at 1.10% with a short-circuit current at 1.86 mA and an open-circuit voltage at 581 mV.
Go to article

Bibliography

  1. Gopikrishna, P., Meher, N. & Iyer P. K. Functional 1,8-naphthalimide AIE/AIEEgens: recent advances and prospects. ACS Appl. Mater. Interfaces 10, 12081–12111 (2018). https://doi.org/10.1021/acsami.7b14473
  2. Banerjee, S. et al. Recent advances in the development of 1,8-naphthalimide based DNA targeting binders, anticancer and fluorescent cellular imaging agents. Chem. Soc. Rev. 42, 1601–1618 (2013). https://doi.org/10.1039/C2CS35467E
  3. Poddar, M., Sivakumar, G. & Misra, R. Donor-acceptor substituted 1,8-naphthalimides: design, synthesis, and structure–property relationship J. Mater. Chem. C 7, 14798–14815 (2019). https://doi.org/10.1039/C9TC02634G
  4. Tomczyk, M. D. & Walczak K. Z. 1,8-Naphthalimide based DNA intercalators and anticancer agents. A systematic review from 2007 to 2017. Eur. J. Med. Chem. 159, 393–422 (2018). https://doi.org/10.1016/j.ejmech.2018.09.055
  5. Gan, J.-A. et al. 1,8-naphthalimides for non-doping OLEDs: the tunable emission color from blue, green to red. J. Photochem. Photobiol. 162, 399–406 (2004). https://doi.org/10.1016/S1010- 6030(03)00381-2
  6. Luo, S. et al. Novel 1,8-naphthalimide derivatives for standard-red organic light-emitting device applications. J. Mater. Chem. C 3, 525–5267 (2015). https://doi.org/10.1039/C5TC00409H
  7. Zhang, X. et al. A 1,8-naphthalimide based small molecular acceptor for polymer solar cells with high open circuit voltage, J. Mater. Chem. C 3, 6979–6985 (2015). https://doi.org/10.1039/C5TC01148E
  8. Do, T. T. et al. Molecular engineering strategy for high efficiency fullerene-free organic solar cells using conjugated 1,8-naphthal-imide and fluorenone building blocks. ACS Appl. Mater. Interfaces 9, 16967–16976 (2017). https://doi.org/10.1021/acsami.6b16395
  9. Yadagiri, B. et al. An all-small-molecule organic solar cell derived from naphthalimide for solution- processed high-efficiency non-fullerene acceptors. J. Mater. Chem. C 7, 709–717 (2019). https://doi.org/10.1039/C8TC05692G
  10. Torres-Moya, I. et al. Synthesis of D-π-A high-emissive 6-arylalkynyl-1,8-naphthalimides for application in organic field-effect transistors and optical waveguides Dyes and Pigm. 191, 109358 (2021). https://doi.org/10.1016/j.dyepig.2021.109358
  11. Gudeika, D. A review of investigation on 4-substituted 1,8-naphthalimide derivatives. Synth. Met. 262, 116328 (2020). https://doi.org/10.1016/j.synthmet.2020.116328
  12. Xie, L. et al. 5-Non-amino aromatic substituted naphthalimides as potential antitumor agents: Synthesis via Suzuki reaction, antiproliferative activity, and DNA-binding behavior. Bioorg. Med. Chem. 19, 961–967 (2011). https://doi.org/10.1016/j.bmc.2010.11.055
  13. Rykowski, S. et al. Design, synthesis, and evaluation of novel 3-carboranyl-1,8-naphthalimide derivatives as potential anticancer agents. Int. J. Mol. Sci. 22, 2772 (2021). https://doi.org/10.3390/ijms22052772
  14. Sivakumar, G. et al. Design, synthesis and characterization of 1,8-naphthalimide based fullerene derivative as electron transport material for inverted perovskite solar cells. Synth. Met. 249, 25–30 (2019). https://doi.org/10.1016/j.synthmet.2019.01.014
  15. Li, L. et al. Self-assembled naphthalimide derivatives as an efficient and low-cost electron extraction layer for n-i-p perovskite solar cells. Chem. Commun. 55, 13239–13242 (2019). https://doi.org/10.1039/C9CC06345E
  16. Agarwala, P. & Kabra, D. A review on triphenylamine (TPA) based organic hole transport materials (HTMs) for dye sensitized solar cells (DSSCs) and perovskite solar cells (PSCs): evolution and molecular engineering. J. Mater. Chem. A 5, 1348–1373 (2017). https://doi.org/10.1039/C6TA08449D
  17. Duan, L. et al. Facile synthesis of triphenylamine-based hole-trans-porting materials for planar perovskite solar cells. J. Power Sources 435, 226767 (2019). https://doi.org/10.1016/j.jpowsour.2019.226767
  18. Wu, G. et al. Triphenylamine-based hole transporting materials with thiophene-derived bridges for perovskite solar cells. Synth. Met. 261, 116323 (2020). https://doi.org/10.1016/j.synthmet.2020.116323
  19. Rezaei, F. & Mohajeri, A. Molecular designing of triphenylamine-based hole-transporting materials for perovskite solar cells Sol. Energy 221, 536–544 (2021). https://doi.org/10.1016/j.solener.2021.04.055
  20. Li, M. et al. Facile donor (D)-π-D triphenylamine-based hole transporting materials with different π-linker for perovskite solar cells. Sol. Energy 195, 618–625 (2020). https://doi.org/10.1016/j.solener.2019.11.071
  21. Bogdanowicz, K. A. et al. Selected electrochemical properties of 4,4’-((1E,1’E)-((1,2,4- Thiadiazole-3,5-diyl)bis(azaneylylidene))-bis(methaneylylidene))bis(N,N-di-p-tolylaniline) towards perovskite solar cells with 14.4% efficiency. Materials 13, 2440 (2020). https://doi.org/10.3390/ma13112440
  22. Ma, B.-B. et al. Visualized acid–base discoloration and optoelectronic investigations of azines and azomethines having double 4-[N,N-di(4-methoxyphenyl)amino]phenyl terminals. J. Mater. Chem. C 3, 7748–7755 (2015). https://doi.org/10.1039/C5TC00909J
  23. Korzec, M. et al. Synthesis and thermal, photophysical, electrochemical properties of 3,3-di[3- arylcarbazol-9-ulmethyl]oxetane derivatives. Materials 14, 5569 (2021). https://doi.org/10.3390/ma14195569
  24. Pająk, A. K. et al. New thiophene imines acting as hole transporting materials in photovoltaic devices. Energy Fuels 34, 10160–10169 (2020). https://doi.org/10.1021/acs.energyfuels.0c01698
  25. Kula, S. et al. 9,9’-bifluorenylidene derivatives as novel hole-transporting materials for potential photovoltaic applications. Dyes Pigm. 174, 108031 (2020). https://doi.org/10.1016/j.dyepig.2019.108031
  26. Derkowska-Zielinska, B. et al. Photovoltaic cells with various azo dyes as components of the active layer. Sol. Energy 203, 19–24 (2020). https://doi.org/10.1016/j.solener.2020.04.022
  27. Nitschke, P. et al. Spectroscopic and electrochemical properties of thiophene-phenylene based Schiff-bases with alkoxy side groups, towards photovoltaic applications. Spectrochim. Acta A 248, 119242 (2021). https://doi.org/10.1016/j.saa.2020.119242
  28. Sęk, D. et al. Polycyclic aromatic hydrocarbons connected with Schiff base linkers: Experimental and theoretical photophysical characterization and electrochemical properties Spectrochim. Acta A, 175, 168–176 (2017). https://doi.org/10.1016/j.saa.2016.12.029
  29. Korzec, M. et al. Live cell imaging by 3-imino-(2-phenol)-1,8-naphthalimides: The effect of ex vivo hydrolysis. Spectrochim. Acta A 238, 118442 (2020). https://doi.org/10.1016/j.saa.2020.118442
  30. Kotowicz, S. et al. Novel 1,8-naphthalimides substituted at 3-C position: Synthesis and evaluation of thermal, electrochemical and luminescent properties. Dyes Pigm. 158, 65–78 (2018). https://doi.org/10.1016/j.dyepig.2018.05.017
  31. Korzec, M. et al. Novel b-ketoenamines versus azomethines for organic electronics: characterization of optical and electrochemical properties supported by theoretical studies. J Mater Sci, 55, 3812–3832 (2020). https://doi.org/10.1007/s10853-019-04210-3
  32. Kotowicz, S. et al. New acceptor–donor–acceptor systems based on bis-(imino-1,8- naphthalimide). Materials 14, 2714 (2021). https://doi.org/10.3390/ma14112714
  33. Costa, J. S. C. et al. Optical band gaps of organic semiconductor materials Opt. Mater. 58, 51–60 (2016). https://doi.org/10.1016/j.optmat.2016.03.041
  34. Nitschke, P. et al. The effect of alkyl substitution of novel imines on their supramolecular organization, towards photovoltaic applications, Sol. Energy 221, 536–544.https://doi.org/10.1016/j.solener.2021.04.055
  35. Misra, A. et al. Electrochemical and optical studies of conjugated polymers for three primary colours. Indian J. Pure Appl. Phys. 43, 921–925 (2005).
  36. Kim, K. et al. Direct p-doping of Li-TFSI for efficient hole injection: Role of polaronic level in molecular doping. Appl. Surf. Sci. 480, 565–571 (2019).https://doi.org/10.1016/j.apsusc.2019.02.248
  37. Singh, R. & Parashar, M. Origin of Hysteresis in Perovskite Solar Cells in Soft-Matter Thin Film Solar Cells: Physical Processes and Device Simulation (AIP Publishing, on-line) (New York, 2020). https://doi.org/10.1063/9780735422414_001
  38. Li, B. et al. Insights into the hole transport properties of LiTFSI-doped spiro-OMeTAD films through impedance spectroscopy. J. Appl. Phys.128, 085501 (2020).https://doi.org/10.1063/5.0011868
  39. Abate, A. et al. Lithium salts “redox active” p-type dopants for organic semiconductors and their impact in solid-state dye-sensitized solar cells. Phys. Chem. Chem. Phys., 15, 2572–2579 (2013). https://doi.org/10.1039/C2CP44397J
  40. Wang, S., Yan, W. & Meng, Y. S., Spectrum-dependent spiro- OMeTAD oxidization mechanism in perovskite solar cells. Appl. Mater. Interfaces 7, 24791–24798 (2015).https://doi.org/10.1021/acsami.5b07703
Go to article

Authors and Affiliations

Mateusz Korzec
1
ORCID: ORCID
Sonia Kotowicz
1
ORCID: ORCID
Agnieszka K. Pająk
1 2
ORCID: ORCID
Ewa Schab-Balcerzak
1 3
ORCID: ORCID

  1. Institute of Chemistry, Faculty of Science and Technology, University of Silesia in Katowice, 9 Szkolna St., 40-007 Katowice, Poland
  2. Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymont St., 30-059 Krakow, Poland
  3. Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Skłodowska St., 41-819 Zabrze, Poland
Download PDF Download RIS Download Bibtex

Abstract

The article presents a study of a hybrid structure based on the combination of a tapered optical fibre and gold nanoparticles dispersed in a liquid crystal material. Sensitivity to changes of the refractive index of the environment in which the structure is located, as well as the possibility of changing the refractive index of liquid crystals by external factors, such as temperature and electric field, were investigated. Electro- and thermally-induced changes of the refractive index of a liquid crystal through the rotation of a molecule director, which cause changes in the light propagated in a tapered optical fibre, were described. The most important issue in the article is to determine the influence of doping a liquid crystal with gold nanoparticles the concentration of which varies between 0.1 and 0.3 wt.%. The paper presents transmission measurements in a wide optical range depending on voltage, temperature, and frequency changes. Additionally, time courses of the obtained signal were measured. The study shows that the appropriate selection of nanoparticle concentration has a huge impact on the optical wave propagation. The experimental results show that the optical changes obtained for the investigated hybrid structure prefer it for use as an electro-optical switcher, filter, or sensor.
Go to article

Bibliography

  1. Taha, B. A. et al. Comprehensive review tapered optical fiber configurations for sensing application: trend and challenges. Biosensors 11, 253 (2021). https://doi.org/10.3390/bios11080253
  2. Joe, H.-E., Yun, H., Jo, S.-H., Jun, M. B. G. & Min, B.-K. A review on optical fiber sensors for environmental monitoring. Int. Pr. Eng. Man.-Gr. 5, 173–191 (2018). https://doi.org/10.1007/s40684-018-0017-6
  3. Korposh, S., James, S. W., Lee, S.-W. & Tatan, R. P. Tapered optical fibre sensors: current trends and future perspectives. Sensors 19, 2294 (2019). https://doi.org/10.3390/s19102294
  4. Adhikari R., Chauhan, D., Mola, G. T. & Dwivedi, R. P. A review of the current state-of-the-art in Fano resonance-based plasmonic metal-insulator-metal waveguides for sensing applications. Opto-Electron. Rev. 29, 148–166 (2021). https://doi.org/10.24425/opelre.2021.139601
  5. Elosua, C. et al. Micro and nanostructured materials for the development of optical fibre. Sensors 17, 2312 (2017). https://doi.org/10.3390/s17102312
  6. Tong, L. Micro/nanofibre optical sensors: challenges and prospects. Sensors 18, 903 (2018). https://doi.org/10.3390/s18030903
  7. Moś, J., Stasiewicz, K., Matras-Postołek, K. & Jaroszewicz, L. R. Thermo-optical switching effect based on a tapered optical fiber and higher alkanes doped with ZnS:Mn. Materials 13, 5044 (2020). https://doi.org/10.3390/ma13215044
  8. Wang, P., Zhao, H., Wang, X., Farrell, G. & Brambilla, G. A Review of multimode interference in tapered optical fibers and related appli-cations. Sensors 18, 858 (2018). https://doi.org/10.3390/s18030858
  9. Komaneca, M. et al. Structurally-modified tapered optical fiber sensors for long-term detection of liquids. Fiber Technol. 47, 187–191 (2019). https://doi.org/10.1016/j.yofte.2018.11.010
  10. Ni, K., Chan, C. C., Dong, X. & Li, L. Temperature independent accelerometer using a fiber Bragg grating incorporating a biconical taper. Fiber Technol. 19, 410–413 (2013). https://doi.org/10.1016/j.yofte.2013.05.008
  11. Wieduwilt, T., Bruckner, S. & Bartelt, H. High force measurement sensitivity with fiber Bragg gratings fabricated in uniform waist fiber tapers. Sci. Technol. 22, 075201 (2011). https://doi.org/10.1088/0957-0233/22/7/075201
  12. Xuan, H., Jin, W. & Zhang, M. CO2 laser induced long period gratings in optical microfibers. Express 17, 21882–21890 (2009). https://doi.org/10.1364/OE.17.021882
  13. Fan, P. et al. Higher-order diffraction of long-period microfiber gratings realized by arc discharge method. Express 24, 25380–25388 (2016). https://doi.org/10.1364/OE.24.025380
  14. Tian, Z., Yam, S. S.-H. & Loock, H. P. Refractive index sensor based on an abrut taper Michelson interferometer in single mode Fiber. Lett. 33, 1105–1107 (2008). https://doi.org/10.1364/OL.33.001105
  15. Bhardwaj, V., Kishor, K. & Sharma, A. C. Tapered optical fiber geometries and sensing applications based on Mach-Zehnder Interferometer: A review. Fiber Technol. 58, 1–12 (2020). https://doi.org/10.1016/j.yofte.2020.102302
  16. Pu, S., Luo, L., Tang, J., Mao, L. & Zeng, X. Ultrasensitive refractive-index sensors based on a tapered fiber coupler with Sagnac loop. IEEE Photon. Technol. Lett. 28, 1073–1076 (2016). https://doi.org/10.1109/LPT.2016.2529181
  17. Chen, Y., Yan, S.-C., Zheng, X., Xu, F. & Lu, Y.-G. A miniature reflective micro-force sensor based on a microfiber coupler. Express 3, 24443–2450 (2014). https://doi.org/10.1364/OE.22.002443
  18. Wu, Y., Zhang, T. H., Rao, Y. J. & Gong, Y. Miniature interferometric humidity sensors based on silica/polymer microfiber knot resonators. Sens. Actuators B Chem. 155, 258–263 (2011). https://doi.org/10.1016/j.snb.2010.12.030
  19. Li, X. & Ding, H. A stable evanescent field based microfiber knot resonator refractive index sensor. IEEE Photon. Technol. Lett. 26, 1625–1628 (2014). https://doi.org/10.1109/LPT.2014.2329321
  20. Lach C. N. H. C., Jamaludin, N., Rokhani, F. Z., Rashid, S. A. & Noor, A. S. M. Lard detection using a tapered optical fiber sensor integrated with gold-graphene quantum dots. Bio-Sens. Res. 26, 100306 (2019). https://doi.org/10.1016/j.sbsr.2019.100306
  21. Korec, J., Stasiewicz, K. A., Garbat, K. & Jaroszewicz, L. R. Enhancement of the SPR Effect in an optical fiber device utilizing a thin ag layer and a 3092A liquid crystal mixture. Molecules 26, 7553 (2021). https://doi.org/3390/molecules26247553
  22. Lin, H.-Y., Huang, Ch.-H., Cheng, G.-L., Chen, N.-K. & Chui, H.-Ch. Tapered optical fiber sensor based on localized surface plasmon resonance Express 20, 21693–21701 (2012). https://doi.org/10.1364/OE.20.021693
  23. Socorro, A. B., Del Villar, I., Corres, J. M., Arregui, F. J. & Matias I. R. Spectral width reduction in lossy mode resonance-based sensors by means of tapered optical fibre structures. Sens. Actuators B Chem. 200, 53–60 (2014). https://doi.org/10.1016/j.snb.2014.04.017
  24. Stasiewicz, K. A., Jakubowska, I. & Dudek, M. Detection of organosulfur and organophosphorus compounds using a hexafluorobutyl acrylate-coated tapered optical fibers. Polymers 14, 612 (2022). https://doi.org/10.3390/polym14030612
  25. Zhu, S. et al. High sensitivity refractometer based on TiO2-coated adiabatic tapered optical fiber via ALD technology. Sensors 16, 1295 (2016). https://doi.org/10.3390/s16081295
  26. Wang, S., Feng, M., Wu, S., Wang, Q. & Zhang, L. Highly sensitive temperature sensor based on gain competition mechanism using graphene coated microfiber. IEEE Photon. J. 10, 6802008 (2018). https://doi.org/10.1109/JPHOT.2018.2827073
  27. Zubiate, P., Zamarreño, C. R., Del Villar, I., Matias, I. R. & Arregui, F. J. Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing. Express 22, 28154–28162 (2014). https://doi.org/10.1364/OE.22.028154
  28. Korec, J., Stasiewicz, K. A., Strzeżysz, O., Kula, P. & Jaroszewicz, L. R. Electro-steering tapered fiber-optic device with liquid crystal cladding. Sensors 2019, 1–11 (2019). https://doi.org/10.1155/2019/1617685
  29. Moś, J. et al. Research on optical properties of tapered optical fibers with liquid crystal cladding doped with gold nanoparticles. Crystals 9, 306 (2019). https://doi.org/10.3390/cryst9060306
  30. Marć, P., Stasiewicz, K., Korec, K., Jaroszewicz, L. R & Kula, P. Polarization properties of nematic liquid crystal cell with tapered optical fiber Opto-Electron. Rev. 27, 321–328 (2019). https://doi.org/10.1016/j.opelre.2019.10.001
  31. Talataisong, W., Ismaeel, R. & Brambilla, G. A review of microfiber-based temperature sensors. Sensors 18, 461 (2018). https://doi.org/10.3390/s18020461
  32. Wu, X. & Tong, L. Optical microfibers and nanofibers. Nanophotonics 2, 407–428 (2018). https://doi.org/10.1515/nanoph-2013-0033
  33. Vishnoi, G., Goel, T. & Pillai, P. K. C. Spectrophotometric studies of chemical species using tapered core multimode optical fiber. Actuators B Chem. 45, 43–48 (1997). https://doi.org/10.1016/S0925-4005(97)00268-2
  34. Zhang, L., Lou, J. & Tong, L. Micro/nanofiber optical sensors. Sens. 1, 31–42 (2011). https://doi.org/10.1007/s13320-010-0022-z
  35. Wiejata, P., Shankar, P. & Mutharasan, R. Fluorescent sensing using biconical tapers. Sens. Actuators B Chem. 96, 315–320 (2003). https://doi.org/10.1016/S0925-4005(03)00548-3
  36. Moayyed, H., Teixeira Leite, I., Coelho, L., Santos, J. & Viegas, D. Analysis of phase interrogated SPR fiber optic sensors with biometallic layers. IEEE Sens. J. 14, 3662–3668 (2014). https://doi.org/1109/JSEN.2014.2329918
  37. Zubiate, P., Zamarreño, C. R., Del Villar, I., Matias, I  R. & Arregui, F. J. High sensitive refractometers based on lossy mode resonance supported by ITO coated D-shape optical fibers. Express 23, 8045–8050 (2015). https://doi.org/10.1364/OE.23.008045
  38. Budaszewki, D. et al. Nanoparticles-enhanced photonic liquid crystal fibers. Mol. Liq. 267, 271–278 (2018). https://doi.org/10.1016/j.molliq.2017.12.080
  39. Tian, Y., Wang, W., Wu, N., Zou, X. & Wang, X. Tapered optical fiber sensor for label-free detection of biomolecules. Sensors 11, 3780–3790 (2011). https://doi.org/10.3390/s110403780
  40. Brambilla, G. et al. Optical fiber nanowires and microwires: fabrication and applications. Opt. Photonics 1, 107–161 (2009). https://doi.org/10.1364/AOP.1.000107
  41. Prakash, J., Khan, S., Chauhan, S. & Biradar, A. M. Metal oxide-nanoparticles, and liquid crystal composites: A review of recent progress. Mol. Liq. 297, 112052 (2020). https://doi.org/10.1016/j.molliq.2019.112052
  42. Khatua, S. et al. Plasmonic nanoparticles−liquid crystal composites. Phys. Chem. C 114, 7251–7257 (2010). https://doi.org/10.1021/jp907923v
  43. Podoliak, N. et al. Elastic constants, viscosity and response time in nematic liquid crystals doped with ferroelectric nanoparticles. RSC Adv. 4, 46068–46074 (2014). https://doi.org/10.1039/C4RA06248E
  44. Choudhary, A., Singh, G. & Biradar, A. M. Advances in gold nanoparticle–liquid crystal composites. Nanoscale 6, 7743–7756 (2014). https://doi.org/10.1039/C4NR01325E
  45. Przybysz, N., Marć, P., Tomaszewska, E., Grobelny, J. & Jaroszewicz,R. Mixtures of selected n-alkanes and Au nanoparticels for optical fiber threshold temperature transducers. Opto-Electron. Rev. 28, 220–228 (2021). https://doi.org/10.24425/opelre.2020.136111
  46. Budaszewski, D. et al. Enhanced efficiency of electric field tunability in photonic liquid crystal fibers doped with gold nanoparticles. Express 27, 14260–14269 (2018). https://doi.org/10.1364/OE.27.014260
  47. Qi, H. & Hegmann T. Multiple alignment modes for nematic liquid crystals doped with alkylthiol-capped gold nanoparticles. ACS Appl. Mater. Interfaces 1, 1731–1738 (2009). https://doi.org/10.1021/am9002815
  48. Stamatoiu, O., Mirzaei, J., Feng, X. & Hegmann, T. Nanoparticles in Liquid Crystals and Liquid Crystalline Nanoparticles. in Liquid Crystals. Topics in Current Chemistry (ed. Tschierske, C.) 318, 331–393 (Springer, Verlag Berlin Heidelberg 2012). https://doi.org/10.1007/128_2011_233
  49. Dąbrowski, R. et al. Low-birefringence liquid crystal mixtures for photonic liquid crystal fibres application. Cryst. 44, 1911–1928 (2017). https://doi.org/10.1080/02678292.2017.1360952
Go to article

Authors and Affiliations

Joanna E. Moś
1
ORCID: ORCID
Karol A. Stasiewicz
1
ORCID: ORCID
Leszek R. Jaroszewicz
1
ORCID: ORCID

  1. Faculty of New Technologies and Chemistry, Military University of Technology, 2 Kaliskiego St., 00-908 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

Optical sampling based on ultrafast optical nonlinearities is a useful technique to monitor the waveforms of ultrashort optical pulses. In this paper, we present a new implementation of optical waveform sampling systems by employing our newly constructed free-running mode-locked fibre laser with a tunable repetition rate and a low timing jitter, an all-optical waveform sampler with a highly nonlinear fibre (HNLF), and our developed computer algorithm for optical waveform display and measurement, respectively. Using a femtosecond fibre laser to generate the highly stable optical sampling pulses and exploiting the four-wave mixing effect in a 100 m-long HNLF, we successfully demonstrate the all-optical waveform sampling of a 10 GHz optical clock pulse sequence with a pulse width of 1.8 ps and a 80 Gbit/s optical data signal, respectively. The experimental results show that waveforms of the tested optical pulse signals are accurately reproduced with a pulse width of 2.0 ps. This corresponds to a temporal resolution of 0.87 ps for optical waveform measurement. Moreover, the optical eye diagram of a 10Gbit/s optical data signal with a 1.8 ps pulse width is also accurately measured by employing our developed optical sampling system.

Go to article

Authors and Affiliations

Y. Liu
Y.G. Zhang
D. Tang
Download PDF Download RIS Download Bibtex

Abstract

As long as high resolution or long-range observation is to be achieved using infrared detection, it will be necessary to cool down the detector in order to reach the best sensitivity and dynamics. This paper describes different cooling solutions currently used for this purpose discussing advantages and drawbacks. Some guideline is given for cooler choice and selection. The focus is on rotary Stirling coolers illustrated by description of the RMs1 cooler dedicated to high operating temperature size, weight, and power infrared detectors. A user case study is presented with cooler power consumption and cool down time of the RMs1 cooler when integrated in IRnova’s Oden MW IDDCAs.
Go to article

Authors and Affiliations

René Griot
1
Christophe Vasse
1
Roel Arts
2
Ruslan Ivanov
3
Linda Höglund
3
Eric Costard 
3

  1. Thales LAS France, 4 rue Marcel Doret, 31700 Blagnac, France
  2. Thales Cryogenics bv, Hooge Zijde 14, 5626 DC Eindhoven, The Netherlands
  3.  IRnova, Isafjordsgatan 26, SE-164 40 Kista, Sweden
Download PDF Download RIS Download Bibtex

Abstract

The paper presents experimental results of the lifetime of light induced excess carriers in the n-type silicon. The lifetimes of carriers of silicon crystals were analysed as a function of the intensity of light illuminating the sample. As a measurement method of the lifetime of carriers, the photoacoustic method in a transmission configuration with different surfaces was used. The dependence character was next analysed in the frame of the Shockley Reed Hall statistics in approximation of the light low intensity.

Go to article

Authors and Affiliations

L. Bychto
M. Maliński
Download PDF Download RIS Download Bibtex

Abstract

Number of trace compounds (called biomarkers), which occur in human breath, provide an information about individual feature of the body, as well as on the state of its health. In this paper we present the results of experiments about detection of certain biomarkers using laser absorption spectroscopy methods of high sensitivity. For NO, OCS, C2H6, NH3, CH4, CO and CO(CH3)2 an analysis of the absorption spectra was performed. The influence of interferents contained in exhaled air was considered. Optimal wavelengths of the detection were found and the solutions of the sensors, as well as the obtained results were presented. For majority of the compounds mentioned above the detection limits applicable for medicine were achieved. The experiments showed that the selected optoelectronic techniques can be applied for screening devices providing early diseases detection.

Go to article

Authors and Affiliations

T. Stacewicz
Z. Bielecki
J. Wojtas
P. Magryta
J. Mikolajczyk
D. Szabra
Download PDF Download RIS Download Bibtex

Abstract

Dye-sensitized solar cells (DSSCs) were prepared using various food dyes. Food dyes are economically superior to organometallic dyes since they are nontoxic and inexpensive. The spectrophotometric evaluation of chosen food dyes in solution and on a TiO2 substrate show that the dyes form J-aggregation on the photoelectrode substrate. Oxidation of potential measurements for used food dyes ensured an energetically permissible and thermodynamically favorable charge transfer throughout the continuous cycle of a photo-electric conversion. The performance of dye-sensitized solar cells based on food dyes was studied. The results illustrate that the dye containing carboxylic acid and sulfonic acid as the acceptor group gave the maximum conversion efficiency 4.20%.

Go to article

Authors and Affiliations

M. Hosseinnezhad
S. Rouhani
Download PDF Download RIS Download Bibtex

Abstract

In this study a metal clad waveguide sensor with a metamaterial guiding layer is analyzed. Sensitivity of the proposed sensor is derived using dispersion and Fresenal’s equations for waveguiding mode and reflection mode. While efficiently analyzing and comparing the results with the existing one, some interesting findings are achieved. It is observed that the proposed sensor shows larger cover layer sensitivity and larger adlayer sensitivity compared to the dielectric guiding layer sensor due to adsorbtive properties of metamaterial. Henceforth, it concludes that the proposed sensor shows sensitivity improvement over a dielectric guiding layer sensor.

Go to article

Authors and Affiliations

A. Upadhyay
Y.K. Prajapati
R. Tripathi
V. Singh
J.P. Saini
Download PDF Download RIS Download Bibtex

Abstract

Non-intentionally doped GaSb epilayers were grown by molecular beam epitaxy (MBE) on highly mismatched semi-insulating GaAs substrate (001) with 2 offcut towards (110). The effects of substrate temperature and the Sb/Ga flux ratio on the crystalline quality, surface morphology and electrical properties were investigated by Nomarski optical microscopy, X-ray diffraction (XRD) and Hall measurements, respectively. Besides, differential Hall was used to investigate the hole concentration behaviour along the GaSb epilayer. It is found that the crystal quality, electrical properties and surface morphology are markedly dependent on the growth temperature and the group V/III flux ratio. Under the optimized parameters, we demonstrate a low hole concentration at very low growth temperature. Unfortunately, the layers grown at low temperature are characterized by wide FWHM and low Hall mobility.

Go to article

Authors and Affiliations

D. Benyahia
Łukasz Kubiszyn
ORCID: ORCID
Krystian Michalczewski
ORCID: ORCID
A. Kębłowski
Piotr Martyniuk
ORCID: ORCID
J. Piotrowski
A. Rogalski

This page uses 'cookies'. Learn more