Details
Title
Optimization of gear teeth in the wind turbine drive train with gear contact’s uncertainty using the reliability-based design optimizationJournal title
Archive of Mechanical EngineeringYearbook
2022Volume
vol. 69Issue
No 4Affiliation
Lee, Changwoo : Pohang Institute of Metal Industry Advancement, Pohang, Republic of Korea ; Park, Yonghui : Department of Mechanical Engineering, Yuhan University, Bucheon, Republic of KoreaAuthors
Keywords
wind turbine ; drive train ; gear ; structural analysis ; dynamics ; Fourier transform ; reliability based design optimizationDivisions of PAS
Nauki TechniczneCoverage
713-728Publisher
Polish Academy of Sciences, Committee on Machine BuildingBibliography
[1] S. Wang, T. Moan, and Z. Jiang. Influence of variability and uncertainty of wind and waves on fatigue damage of a floating wind turbine drivetrain. Renewable Energy, 181:870–897, 2022. doi: 10.1016/j.renene.2021.09.090.[2] Z. Yu, C. Zhu, J. Tan, C. Song, and Y. Wang. Fully-coupled and decoupled analysis comparisons of dynamic characteristics of floating offshore wind turbine drivetrain. Ocean Engineering, 247:110639, 2022. doi: 10.1016/j.oceaneng.2022.110639.
[3] F.K. Moghadam and A.R. Nejad. Online condition monitoring of floating wind turbines drivetrain by means of digital twin. Mechanical Systems and Signal Processing, 162:108087, 2022. doi: 10.1016/j.ymssp.2021.108087.
[4] W. Shi, C.W. Kim, C.W. Chung, and H.C. Park. Dynamic modeling and analysis of a wind turbine drivetrain using the torsional dynamic model. International Journal of Precision Engineering and Manufacturing, 14(1):153–159, 2013. doi: 10.1007/s12541-013-0021-2.
[5] M. Todorov and G. Vukov. Parametric torsional vibrations of a drive train in horizontal axis wind turbine. In Proceeding of the 1st Conference Franco-Syrian about Renewable Energy, pages 1–17, Damas, 24-28 October, 2010.
[6] R.C. Juvinall and K.M. Marshek. Fundamentals of Machine Component Design. John Wiley & Sons, 2020.
[7] Q. Zhang, J. Kang, W. Dong, and S. Lyu. A study on tooth modification and radiation noise of a manual transaxle. International Journal of Precision Engineering and Manufacturing, 13(6):1013–1020, 2012. doi: 10.1007/s12541-012-0132-1.
[8] B. Shlecht, T. Shulze, and T. Rosenlocher. Simulation of heavy drive trains with multimegawatt transmission power in SimPACK. In: SIMPACK Users Meeting, Baden-Baden, Germany, 21-22 March, 2006.
[9] M. Todorov and G. Vukov. Modal properties of drive train in horizontal axis wind turbine. The Romanian Review Precision Mechanics, Optics & Mechatronics, 40:267–275, 2011.
[10] D. Lee, D.H. Hodges, and M.J. Patil. Multi‐flexible‐body dynamic analysis of horizontal axis wind turbines. Wind Energy, 5(4):281–300, 2002. doi: 10.1002/we.66.
[11] F.L.J. Linden, P.H. Vazques, and S. Silva. Modelling and simulating the efficiency and elasticity of gearboxes, In Proceeding of the 7th Modelica Conference, pages 270–277, Como, 20-22 September, 2009.
[12] J. Wang, D. Qin, and Y. Ding. Dynamic behavior of wind turbine by a mixed flexible-rigid multi-body model. Journal of System Design and Dynamics, 3(3):403–419, 2009. doi: 10.1299/jsdd.3.403.
[13] A.A. Shabana. Computational Dynamics. John Wiley & Sons. 2009.
[14] A.K. Chopra. Dynamics of Structures. Pearson Education India. 2007.
[15] Y. Park, H. Park, Z. Ma, J. You, J. and W. Shi. Multibody dynamic analysis of a wind turbine drivetrain in consideration of the shaft bending effect and a variable gear mesh including eccentricity and nacelle movement. Frontiers in Energy Research, 8:604414, 2021. doi: 10.3389/fenrg.2020.604414.
[16] S.R. Singiresu. Mechanical Vibrations. Addison Wesley. 1995.
[17] R.R. Craig Jr and A.J. Kurdila. Fundamentals of Structural Dynamics. John Wiley & Sons. 2006.
[18] K.J. Bathe. Finite Element Procedures. Klaus-Jurgen Bathe. 2006.
[19] Y. Kim, C.W. Kim, S. Lee, and H. Park. Dynamic modeling and numerical analysis of a cold rolling mill. International Journal of Precision Engineering and Manufacturing, 14(3):407–413. 2013. doi: 10.1007/s12541-013-0056-4.
[20] S.J. Yoon and D.H. Choi. Reliability-based design optimization of slider air bearings. KSME International Journal, 18(10):1722–1729, 2004. doi: 10.1007/BF02984320.
[21] H.H. Chun,S.J. Kwon, T. and Tak. Reliability-based design optimization of automotive suspension systems. International Journal of Automotive Technology, 8(6):713–722, 2007.
[22] J. Fang, Y. Gao, G. Sun, and Q. Li. Multiobjective reliability-based optimization for design of a vehicledoor. Finite Elements in Analysis and Design, 67:13–21, 2013. doi: 10.1016/j.finel.2012.11.007.
[23] Y.L. Young, J.W. Baker, and M.R. Motley. Reliability-based design and optimization of adaptive marine structures. Composite Structures, 92(2):244–253, 2010. doi: 10.1016/j.compstruct.2009.07.024.
[24] G. Liu, H. Liu, C. Zhu, T. Mao, and G. Hu. Design optimization of a wind turbine gear transmission based on fatigue reliability sensitivity. Frontiers of Mechanical Engineering, 16(1):61–79, 2021. doi: 10.1007/s11465-020-0611-5.
[25] H. Li, H. Cho, H. Sugiyama, K.K. Choi, and N.J. Gaul. Reliability-based design optimization of wind turbine drivetrain with integrated multibody gear dynamics simulation considering wind load uncertainty. Structural and Multidisciplinary Optimization, 56 (1):183–201, 2017. doi: 10.1007/s00158-017-1693-5.
[26] C. Luo, B. Keshtegar, S.P. Zhu, O. Taylan, O. and X.P. Niu. Hybrid enhanced Monte Carlo simulation coupled with advanced machine learning approach for accurate and efficient structural reliability analysis. Computer Methods in Applied Mechanics and Engineering, 388:114218. doi: 10.1016/j.cma.2021.114218.