Details
Title
Numerical predictions of laminar flow and free convection heat transfer from an isothermal vertical flat plateJournal title
Archive of Mechanical EngineeringYearbook
2022Volume
vol. 69Issue
No 4Affiliation
Belhocine, Ali : Department of Mechanical Engineering, University of Sciences and the Technology of Oran, Algeria ; Stojanovic, Nadica : University of Kragujevac, Faculty of Engineering, Department for Motor Vehicles and Motors, Serbia ; Abdullah, Oday Ibraheem : System Technologies and Mechanical Design Methodology, Hamburg University of Technology, Hamburg, GermanyAuthors
Keywords
free convective flow ; vertical flat plate ; similarity solution ; boundary layer flow ; dimensionless temperature ; Prandtl number ; Runge-Kutta methodDivisions of PAS
Nauki TechniczneCoverage
749-773Publisher
Polish Academy of Sciences, Committee on Machine BuildingBibliography
[1] Md J. Uddin, W.A. Khan, and A.I.Md Ismail. Similarity solution of double diffusive free convective flow over a moving vertical flat plate with convective boundary condition. Ain Shams Engineering Journal, 6(3):1105–1112, 2015. doi: 10.1016/j.asej.2015.01.008.[2] J.A. Esfahani and B. Bagherian. Similarity solution for unsteady free convection from a vertical plate at constant temperature to power law fluids. Journal of Heat Transfer, 134(10):1–7, 2012. doi: 10.1115/1.4005750.
[3] Y.Z. Boutros, M.B. Abd-el-Malek, and N.A. Badran. Group theoretic approach for solving time-independent free-convective boundary layer flow on a nonisothermal vertical flat plate. Archiwum Mechaniki Stosowanej, 42(3):377–395, 1990.
[4] M. Modather, A.M. Rashad, and A.J. Chamkha. An analytical study of MHD heat and mass transfer oscillatory flow of a micropolar fluid over a vertical permeable plate in a porous medium. Turkish Journal of Engineering and Environmental Sciences, 33(4):245–257, 2009.
[5] M.V. Krishna and A.J. Chamkha. Hall and ion slip effects on MHD rotating flow of elastico-viscous fluid through porous medium. International Communications in Heat and Mass Transfer, 113:104494, 2020. doi: 10.1016/j.icheatmasstransfer.2020.104494.
[6] M.V. Krishna and A.J. Chamkha. Hall and ion slip effects on MHD rotating boundary layer flow of nanofluid past an infinite vertical plate embedded in a porous medium. Results in Physics, 15:102652, 2019. doi: 10.1016/j.rinp.2019.102652.
[7] M.V. Krishna, N.A. Ahamad, and A.J. Chamkha. Hall and ion slip effects on unsteady MHD free convective rotating flow through a saturated porous medium over an exponential accelerated plate. Alexandria Engineering Journal, 59(2):565–577, 2020. doi: 10.1016/j.aej.2020.01.043.
[8] A.J. Chamkha. Non-Darcy fully developed mixed convection in a porous medium channel with heat generation/absorption and hydromagnetic effects. Numerical Heat Transfer, Part A: Applications, 32(6):653–675, 1997. doi: 10.1080/10407789708913911.
[9] A.J. Chamkha. Thermal radiation and buoyancy effects on hydromagnetic flow over an accelerating permeable surface with heat source or sink. International Journal of Engineering Science, 38(15):1699–1712, 2000. doi: 10.1016/S0020-7225(99)00134-2.
[10] G. Rasool, T. Zhang, A.J. Chamkha, A. Shafiq, I. Tlili, and G. Shahzadi. Entropy generation and consequences of binary chemical reaction on MHD Darcy–Forchheimer Williamson nanofluid flow over non-linearly stretching surface. Entropy, 22(18):18, 2020. doi: 10.3390/e22010018.
[11] A.J. Chamkha, C. Issa, and K. Khanafer. Natural convection from an inclined plate embedded in a variable porosity porous medium due to solar radiation. International Journal of Thermal Sciences, 41(1):73–81, 2002. doi: 10.1016/S1290-0729(01)01305-9.
[12] A.J. Chamkha and A. Ben-Nakhi. MHD mixed convection-radiation interaction along a permeable surface immersed in a porous medium in the presence of Soret and Dufour's effects. Heat and Mass Transfer, 44:845, 2008. doi: 10.1007/s00231-007-0296-x.
[13] A.J. Chamkha. Hydromagnetic natural convection from an isothermal inclined surface adjacent to a thermally stratified porous medium. International Journal of Engineering Science, 35(10/11):975–986, 1997. doi: 10.1016/S0020-7225(96)00122-X.
[14] A. Wakif, A.J. Chamkha, I.L. Animasaun, M. Zaydan, H. Waqas, and R. Sehaqui. Novel physical insights into the thermodynamic irreversibilities within dissipative EMHD fluid flows past over a moving horizontal Riga plate in the coexistence of wall suction and Joule heating effects: A comprehensive numerical investigation. Arabian Journal for Science and Engineering, 45:9423–9438, 2020. doi: 10.1007/s13369-020-04757-3.
[15] N.A. Ahammad, I.A. Badruddin, S.Z. Kamangar, H.M.T. Khaleed, C.A. Saleel, and T.M.I. Mahlia. Heat Transfer and entropy in a vertical porous plate subjected to suction velocity and MHD. Entropy, 23(8):1069, 2021. doi: 10.3390/e23081069.
[16] M.V. Krishna, N.A. Ahamad, and A.J. Chamkha. Numerical investigation on unsteady MHD convective rotating flow past an infinite vertical moving porous surface. Ain Shams Engineering Journal, 12(2): 2099–2109, 2021. doi: 10.1016/j.asej.2020.10.013.
[17] P. Kandaswamy, A.K.A. Hakeem, and S.Saravanan. Internal natural convection driven by an orthogonal pair of differentially heated plates. Computers & Fluids, 111:179–186, 2015. doi: 10.1016/j.compfluid.2015.01.015.
[18] S.E. Ahmed, H.F. Oztop, and K. Al-Salem. Natural convection coupled with radiation heat transfer in an inclined porous cavity with corner heater. Computers & Fluids, 102:74–84, 2014. doi: 10.1016/j.compfluid.2014.06.024.
[19] S. Siddiqa, M.A. Hossain, and R.S.R. Gorla. Natural convection flow of viscous fluid over triangular wavy horizontal surface. Computers & Fluids, 106:130–134, 2015. doi: 10.1016/j.compfluid.2014.10.001.
[20] L. Zhou, S.W. Armfield, N. Williamson, M.P. Kirkpatrick, and W. Lin. Natural convection in a cavity with time-dependent flux boundary. International Journal of Heat and Fluid Flow, 92:108887, 2021. doi: 10.1016/j.ijheatfluidflow.2021.108887.
[21] K.M. Talluru, H.F. Pan, J.C. Patterson, and K.A. Chauhan. Convection velocity of temperature fluctuations in a natural convection boundary layer. International Journal of Heat and Fluid Flow, 84:108590, 2020. doi: 10.1016/j.ijheatfluidflow.2020.108590.
[22] M. Chakkingal, S. Kenjereš, I. Ataei-Dadavi, M.J. Tummers, and C.R. Kleijn. Numerical analysis of natural convection with conjugate heat transfer in coarse-grained porous media. International Journal of Heat and Fluid Flow, 77:48–60, 2019. doi: 10.1016/j.ijheatfluidflow.2019.03.008.
[23] N. Mahir and Z. Altaç. Numerical investigation of flow and combined natural-forced convection from an isothermal square cylinder in cross flow. International Journal of Heat and Fluid Flow, 75:103–121, 2019. doi: 10.1016/j.ijheatfluidflow.2018.11.013.
[24] M.A. Ezan and M. Kalfa. Numerical investigation of transient natural convection heat transfer of freezing water in a square cavity. International Journal of Heat and Fluid Flow, 61(Part B):438–448, 2016. doi: 10.1016/j.ijheatfluidflow.2016.06.004.
[25] A. Ouahouah, N. Labsi, X. Chesneau, and Y.K. Benkahla. Natural convection within a non-uniformly heated cavity partly filled with a shear-thinning nanofluid and partly with air. Journal of Non-Newtonian Fluid Mechanics, 289:104490, 2021. doi: 10.1016/j.jnnfm.2021.104490.
[26] M.H. Matin, I. Pop, and S. Khanchezar. Natural convection of power-law fluid between two-square eccentric duct annuli Journal of Non-Newtonian Fluid Mechanics, 197:11–23, 2013. doi: 10.1016/j.jnnfm.2013.02.002.
[27] M.T. Nguyen, A.M. Aly, and S.W. Lee. A numerical study on unsteady natural/ mixed convection in a cavity with fixed and moving rigid bodies using the ISPH method. International Journal of Numerical Methods for Heat & Fluid Flow, 28(3):684–703, 2018. doi: 10.1108/HFF-02-2017-0058.
[28] Y. Guo, R. Bennacer, S. Shen, D.E. Ameziani, and M. Bouzidi. Simulation of mixed convection in slender rectangular cavity with lattice Boltzmann method. International Journal of Numerical Methods for Heat & Fluid Flow, 20(1):130–148, 2010. doi: 10.1108/09615531011008163.
[29] N.B. Balam and A. Gupta. A fourth-order accurate finite difference method to evaluate the true transient behaviour of natural convection flow in enclosures. International Journal of Numerical Methods for Heat & Fluid Flow, 30(3):1233–1290, 2020. doi: 10.1108/HFF-06-2019-0519.
[30] L. Lukose and T. Basak. Numerical heat flow visualization analysis on enhanced thermal processing for various shapes of containers during thermal convection. International Journal of Numerical Methods for Heat & Fluid Flow, 30(7):3535–3583, 2020. doi: 10.1108/HFF-05-2019-0376.
[31] P. Pichandi, and S. Anbalagan. Natural convection heat transfer and fluid flow analysis in a 2D square enclosure with sinusoidal wave and different convection mechanism. International Journal of Numerical Methods for Heat & Fluid Flow, 28(9):2158–2188, 2018. doi: 10.1108/HFF-12-2017-0522.
[32] M. Salari, M.M. Rashidi,. E.H. Malekshah, and M.H. Malekshah. Numerical analysis of turbulent/transitional natural convection in trapezoidal enclosures. International Journal of Numerical Methods for Heat & Fluid Flow, 27(12):2902–2923, 2017. doi: 10.1108/HFF-03-2017-0097.
[33] A. Salama, M. El Amin, and S. Sun. Numerical investigation of natural convection in two enclosures separated by anisotropic solid wall. International Journal of Numerical Methods for Heat & Fluid Flow, 24(8):1928–1953, 2014. doi: 10.1108/HFF-09-2013-0268.
[34] N. Kim and J.N. Reddy. Least-squares finite element analysis of three-dimensional natural convection of generalized Newtonian fluids. International Journal for Numerical Methods in Fluids, 93(4):1292–1307, 2021. doi: 10.1002/fld.4929.
[35] J. Zhang and F. Lin. An efficient Legendre-Galerkin spectral method for the natural convection in two-dimensional cavities. International Journal for Numerical Methods in Fluids, 90(12):651–659, 2019.doi: 10.1002/fld.4742.
[36] J.C.F. Wong and P. Yuan. A FE-based algorithm for the inverse natural convection problem. International Journal for Numerical Methods in Fluids, 68(1):48–82, 2012. doi: 10.1002/fld.2494.
[37] H.S. Panda and S.G. Moulic. An analytical solution for natural convective gas micro flow in a tall vertical enclosure. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 225(1):145–154, 2011. doi: 10.1243/09544062JMES1768.
[38] M. Saleem, S. Asghar, and M.A. Hossain. Natural convection flow in an open rectangular cavity with cold sidewalls and constant volumetric heat source. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 225(5):1191–1201, 2011. doi: 10.1177/09544062JMES2648.
[39] A. Koca, H.F. Oztop, and Y. Varol. Natural convection analysis for both protruding and flush-mounted heaters located in triangular enclosure. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 222(7):1203–1214, 2008. doi: 10.1243/09544062JMES886.
[40] M.K. Mansour. Effect of natural convection on conjugate heat transfer characteristics in liquid mini channel during phase change material melting. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 228(3):491–513, 2014. doi: 10.1177/0954406213486590.
[41] E.F. Kent. Numerical analysis of laminar natural convection in isosceles triangular enclosures. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 223(5):1157–1169, 2009. doi: 10.1243/09544062JMES1122.
[42] A. Belhocine and W.Z. Wan Omar. An analytical method for solving exact solutions of the convective heat transfer in fully developed laminar flow through a circular tube. Heat Transfer Asian Research, 46(8):1342–1353, 2017. doi: 10.1002/htj.21277.
[43] A. Belhocine and W. Z. Wan Omar. Numerical study of heat convective mass transfer in a fully developed laminar flow with constant wall temperature. Case Studies in Thermal Engineering, 6:116–127, 2015. doi: 10.1016/j.csite.2015.08.003.
[44] A. Belhocine and O.I. Abdullah. Numerical simulation of thermally developing turbulent flow through a cylindrical tube. International Journal of Advanced Manufacturing Technology, 102(5-8):2001–2012, 2019. doi: 10.1007/s00170-019-03315-y.
[45] A. Belhocine and W.Z. Wan Omar. Analytical solution and numerical simulation of the generalized Levèque equation to predict the thermal boundary layer. Mathematics and Computers in Simulation, 180:43–60, 2021. doi: 10.1016/j.matcom.2020.08.007.
[46] A. Belhocine, N.Stojanovic, and O.I. Abdullah. Numerical simulation of laminar boundary layer flow over a horizontal flat plate in external incompressible viscous fluid. European Journal of Computational Mechanics, 30(4-6):337–386, 2021.doi: 10.13052/ejcm2642-2085.30463.
[47] S. Ostrach. An analysis of laminar free convection flow and heat transfer about a flat plate parallel to the direction of the generating body force. National Advisory Committee for Aeronautics, Report 1111, 1953.
[48] T.L. Bergman, A.S. Lavine, F.P. Incropera, and D.P. Dewitt. Fundamentals of Heat and Mass Transfer, 7th ed., John Wiley & Sons, New York, 2011.