Details

Title

Numerical predictions of laminar flow and free convection heat transfer from an isothermal vertical flat plate

Journal title

Archive of Mechanical Engineering

Yearbook

2022

Volume

vol. 69

Issue

No 4

Affiliation

Belhocine, Ali : Department of Mechanical Engineering, University of Sciences and the Technology of Oran, Algeria ; Stojanovic, Nadica : University of Kragujevac, Faculty of Engineering, Department for Motor Vehicles and Motors, Serbia ; Abdullah, Oday Ibraheem : System Technologies and Mechanical Design Methodology, Hamburg University of Technology, Hamburg, Germany

Authors

Keywords

free convective flow ; vertical flat plate ; similarity solution ; boundary layer flow ; dimensionless temperature ; Prandtl number ; Runge-Kutta method

Divisions of PAS

Nauki Techniczne

Coverage

749-773

Publisher

Polish Academy of Sciences, Committee on Machine Building

Bibliography

[1] Md J. Uddin, W.A. Khan, and A.I.Md Ismail. Similarity solution of double diffusive free convective flow over a moving vertical flat plate with convective boundary condition. Ain Shams Engineering Journal, 6(3):1105–1112, 2015. doi: 10.1016/j.asej.2015.01.008.
[2] J.A. Esfahani and B. Bagherian. Similarity solution for unsteady free convection from a vertical plate at constant temperature to power law fluids. Journal of Heat Transfer, 134(10):1–7, 2012. doi: 10.1115/1.4005750.
[3] Y.Z. Boutros, M.B. Abd-el-Malek, and N.A. Badran. Group theoretic approach for solving time-independent free-convective boundary layer flow on a nonisothermal vertical flat plate. Archiwum Mechaniki Stosowanej, 42(3):377–395, 1990.
[4] M. Modather, A.M. Rashad, and A.J. Chamkha. An analytical study of MHD heat and mass transfer oscillatory flow of a micropolar fluid over a vertical permeable plate in a porous medium. Turkish Journal of Engineering and Environmental Sciences, 33(4):245–257, 2009.
[5] M.V. Krishna and A.J. Chamkha. Hall and ion slip effects on MHD rotating flow of elastico-viscous fluid through porous medium. International Communications in Heat and Mass Transfer, 113:104494, 2020. doi: 10.1016/j.icheatmasstransfer.2020.104494.
[6] M.V. Krishna and A.J. Chamkha. Hall and ion slip effects on MHD rotating boundary layer flow of nanofluid past an infinite vertical plate embedded in a porous medium. Results in Physics, 15:102652, 2019. doi: 10.1016/j.rinp.2019.102652.
[7] M.V. Krishna, N.A. Ahamad, and A.J. Chamkha. Hall and ion slip effects on unsteady MHD free convective rotating flow through a saturated porous medium over an exponential accelerated plate. Alexandria Engineering Journal, 59(2):565–577, 2020. doi: 10.1016/j.aej.2020.01.043.
[8] A.J. Chamkha. Non-Darcy fully developed mixed convection in a porous medium channel with heat generation/absorption and hydromagnetic effects. Numerical Heat Transfer, Part A: Applications, 32(6):653–675, 1997. doi: 10.1080/10407789708913911.
[9] A.J. Chamkha. Thermal radiation and buoyancy effects on hydromagnetic flow over an accelerating permeable surface with heat source or sink. International Journal of Engineering Science, 38(15):1699–1712, 2000. doi: 10.1016/S0020-7225(99)00134-2.
[10] G. Rasool, T. Zhang, A.J. Chamkha, A. Shafiq, I. Tlili, and G. Shahzadi. Entropy generation and consequences of binary chemical reaction on MHD Darcy–Forchheimer Williamson nanofluid flow over non-linearly stretching surface. Entropy, 22(18):18, 2020. doi: 10.3390/e22010018.
[11] A.J. Chamkha, C. Issa, and K. Khanafer. Natural convection from an inclined plate embedded in a variable porosity porous medium due to solar radiation. International Journal of Thermal Sciences, 41(1):73–81, 2002. doi: 10.1016/S1290-0729(01)01305-9.
[12] A.J. Chamkha and A. Ben-Nakhi. MHD mixed convection-radiation interaction along a permeable surface immersed in a porous medium in the presence of Soret and Dufour's effects. Heat and Mass Transfer, 44:845, 2008. doi: 10.1007/s00231-007-0296-x.
[13] A.J. Chamkha. Hydromagnetic natural convection from an isothermal inclined surface adjacent to a thermally stratified porous medium. International Journal of Engineering Science, 35(10/11):975–986, 1997. doi: 10.1016/S0020-7225(96)00122-X.
[14] A. Wakif, A.J. Chamkha, I.L. Animasaun, M. Zaydan, H. Waqas, and R. Sehaqui. Novel physical insights into the thermodynamic irreversibilities within dissipative EMHD fluid flows past over a moving horizontal Riga plate in the coexistence of wall suction and Joule heating effects: A comprehensive numerical investigation. Arabian Journal for Science and Engineering, 45:9423–9438, 2020. doi: 10.1007/s13369-020-04757-3.
[15] N.A. Ahammad, I.A. Badruddin, S.Z. Kamangar, H.M.T. Khaleed, C.A. Saleel, and T.M.I. Mahlia. Heat Transfer and entropy in a vertical porous plate subjected to suction velocity and MHD. Entropy, 23(8):1069, 2021. doi: 10.3390/e23081069.
[16] M.V. Krishna, N.A. Ahamad, and A.J. Chamkha. Numerical investigation on unsteady MHD convective rotating flow past an infinite vertical moving porous surface. Ain Shams Engineering Journal, 12(2): 2099–2109, 2021. doi: 10.1016/j.asej.2020.10.013.
[17] P. Kandaswamy, A.K.A. Hakeem, and S.Saravanan. Internal natural convection driven by an orthogonal pair of differentially heated plates. Computers & Fluids, 111:179–186, 2015. doi: 10.1016/j.compfluid.2015.01.015.
[18] S.E. Ahmed, H.F. Oztop, and K. Al-Salem. Natural convection coupled with radiation heat transfer in an inclined porous cavity with corner heater. Computers & Fluids, 102:74–84, 2014. doi: 10.1016/j.compfluid.2014.06.024.
[19] S. Siddiqa, M.A. Hossain, and R.S.R. Gorla. Natural convection flow of viscous fluid over triangular wavy horizontal surface. Computers & Fluids, 106:130–134, 2015. doi: 10.1016/j.compfluid.2014.10.001.
[20] L. Zhou, S.W. Armfield, N. Williamson, M.P. Kirkpatrick, and W. Lin. Natural convection in a cavity with time-dependent flux boundary. International Journal of Heat and Fluid Flow, 92:108887, 2021. doi: 10.1016/j.ijheatfluidflow.2021.108887.
[21] K.M. Talluru, H.F. Pan, J.C. Patterson, and K.A. Chauhan. Convection velocity of temperature fluctuations in a natural convection boundary layer. International Journal of Heat and Fluid Flow, 84:108590, 2020. doi: 10.1016/j.ijheatfluidflow.2020.108590.
[22] M. Chakkingal, S. Kenjereš, I. Ataei-Dadavi, M.J. Tummers, and C.R. Kleijn. Numerical analysis of natural convection with conjugate heat transfer in coarse-grained porous media. International Journal of Heat and Fluid Flow, 77:48–60, 2019. doi: 10.1016/j.ijheatfluidflow.2019.03.008.
[23] N. Mahir and Z. Altaç. Numerical investigation of flow and combined natural-forced convection from an isothermal square cylinder in cross flow. International Journal of Heat and Fluid Flow, 75:103–121, 2019. doi: 10.1016/j.ijheatfluidflow.2018.11.013.
[24] M.A. Ezan and M. Kalfa. Numerical investigation of transient natural convection heat transfer of freezing water in a square cavity. International Journal of Heat and Fluid Flow, 61(Part B):438–448, 2016. doi: 10.1016/j.ijheatfluidflow.2016.06.004.
[25] A. Ouahouah, N. Labsi, X. Chesneau, and Y.K. Benkahla. Natural convection within a non-uniformly heated cavity partly filled with a shear-thinning nanofluid and partly with air. Journal of Non-Newtonian Fluid Mechanics, 289:104490, 2021. doi: 10.1016/j.jnnfm.2021.104490.
[26] M.H. Matin, I. Pop, and S. Khanchezar. Natural convection of power-law fluid between two-square eccentric duct annuli Journal of Non-Newtonian Fluid Mechanics, 197:11–23, 2013. doi: 10.1016/j.jnnfm.2013.02.002.
[27] M.T. Nguyen, A.M. Aly, and S.W. Lee. A numerical study on unsteady natural/ mixed convection in a cavity with fixed and moving rigid bodies using the ISPH method. International Journal of Numerical Methods for Heat & Fluid Flow, 28(3):684–703, 2018. doi: 10.1108/HFF-02-2017-0058.
[28] Y. Guo, R. Bennacer, S. Shen, D.E. Ameziani, and M. Bouzidi. Simulation of mixed convection in slender rectangular cavity with lattice Boltzmann method. International Journal of Numerical Methods for Heat & Fluid Flow, 20(1):130–148, 2010. doi: 10.1108/09615531011008163.
[29] N.B. Balam and A. Gupta. A fourth-order accurate finite difference method to evaluate the true transient behaviour of natural convection flow in enclosures. International Journal of Numerical Methods for Heat & Fluid Flow, 30(3):1233–1290, 2020. doi: 10.1108/HFF-06-2019-0519.
[30] L. Lukose and T. Basak. Numerical heat flow visualization analysis on enhanced thermal processing for various shapes of containers during thermal convection. International Journal of Numerical Methods for Heat & Fluid Flow, 30(7):3535–3583, 2020. doi: 10.1108/HFF-05-2019-0376.
[31] P. Pichandi, and S. Anbalagan. Natural convection heat transfer and fluid flow analysis in a 2D square enclosure with sinusoidal wave and different convection mechanism. International Journal of Numerical Methods for Heat & Fluid Flow, 28(9):2158–2188, 2018. doi: 10.1108/HFF-12-2017-0522.
[32] M. Salari, M.M. Rashidi,. E.H. Malekshah, and M.H. Malekshah. Numerical analysis of turbulent/transitional natural convection in trapezoidal enclosures. International Journal of Numerical Methods for Heat & Fluid Flow, 27(12):2902–2923, 2017. doi: 10.1108/HFF-03-2017-0097.
[33] A. Salama, M. El Amin, and S. Sun. Numerical investigation of natural convection in two enclosures separated by anisotropic solid wall. International Journal of Numerical Methods for Heat & Fluid Flow, 24(8):1928–1953, 2014. doi: 10.1108/HFF-09-2013-0268.
[34] N. Kim and J.N. Reddy. Least-squares finite element analysis of three-dimensional natural convection of generalized Newtonian fluids. International Journal for Numerical Methods in Fluids, 93(4):1292–1307, 2021. doi: 10.1002/fld.4929.
[35] J. Zhang and F. Lin. An efficient Legendre-Galerkin spectral method for the natural convection in two-dimensional cavities. International Journal for Numerical Methods in Fluids, 90(12):651–659, 2019.doi: 10.1002/fld.4742.
[36] J.C.F. Wong and P. Yuan. A FE-based algorithm for the inverse natural convection problem. International Journal for Numerical Methods in Fluids, 68(1):48–82, 2012. doi: 10.1002/fld.2494.
[37] H.S. Panda and S.G. Moulic. An analytical solution for natural convective gas micro flow in a tall vertical enclosure. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 225(1):145–154, 2011. doi: 10.1243/09544062JMES1768.
[38] M. Saleem, S. Asghar, and M.A. Hossain. Natural convection flow in an open rectangular cavity with cold sidewalls and constant volumetric heat source. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 225(5):1191–1201, 2011. doi: 10.1177/09544062JMES2648.
[39] A. Koca, H.F. Oztop, and Y. Varol. Natural convection analysis for both protruding and flush-mounted heaters located in triangular enclosure. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 222(7):1203–1214, 2008. doi: 10.1243/09544062JMES886.
[40] M.K. Mansour. Effect of natural convection on conjugate heat transfer characteristics in liquid mini channel during phase change material melting. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 228(3):491–513, 2014. doi: 10.1177/0954406213486590.
[41] E.F. Kent. Numerical analysis of laminar natural convection in isosceles triangular enclosures. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 223(5):1157–1169, 2009. doi: 10.1243/09544062JMES1122.
[42] A. Belhocine and W.Z. Wan Omar. An analytical method for solving exact solutions of the convective heat transfer in fully developed laminar flow through a circular tube. Heat Transfer Asian Research, 46(8):1342–1353, 2017. doi: 10.1002/htj.21277.
[43] A. Belhocine and W. Z. Wan Omar. Numerical study of heat convective mass transfer in a fully developed laminar flow with constant wall temperature. Case Studies in Thermal Engineering, 6:116–127, 2015. doi: 10.1016/j.csite.2015.08.003.
[44] A. Belhocine and O.I. Abdullah. Numerical simulation of thermally developing turbulent flow through a cylindrical tube. International Journal of Advanced Manufacturing Technology, 102(5-8):2001–2012, 2019. doi: 10.1007/s00170-019-03315-y.
[45] A. Belhocine and W.Z. Wan Omar. Analytical solution and numerical simulation of the generalized Levèque equation to predict the thermal boundary layer. Mathematics and Computers in Simulation, 180:43–60, 2021. doi: 10.1016/j.matcom.2020.08.007.
[46] A. Belhocine, N.Stojanovic, and O.I. Abdullah. Numerical simulation of laminar boundary layer flow over a horizontal flat plate in external incompressible viscous fluid. European Journal of Computational Mechanics, 30(4-6):337–386, 2021.doi: 10.13052/ejcm2642-2085.30463.
[47] S. Ostrach. An analysis of laminar free convection flow and heat transfer about a flat plate parallel to the direction of the generating body force. National Advisory Committee for Aeronautics, Report 1111, 1953.
[48] T.L. Bergman, A.S. Lavine, F.P. Incropera, and D.P. Dewitt. Fundamentals of Heat and Mass Transfer, 7th ed., John Wiley & Sons, New York, 2011.

Date

14.11.2022

Type

Article

Identifier

DOI: 10.24425/ame.2022.141523
×