Details

Title

Electronic structure, stability, and strength of Cu–NiAl alloys: Experiment and DFT investigation

Journal title

Opto-Electronics Review

Yearbook

2022

Volume

30

Issue

2

Authors

Affiliation

Zarhri, Zakaryaa : CONACYT-Tecnológico Nacional de México/I.T. Chetumal; Insurgentes 330, C.P. 77013, Chetumal, Quintana Roo, Mexico

Keywords

mechanical properties ; electronic structure ; DFT study ; Cu-doped nickel aluminide ; formation energy

Divisions of PAS

Nauki Techniczne

Coverage

e141707

Publisher

Polish Academy of Sciences (under the auspices of the Committee on Electronics and Telecommunication) and Association of Polish Electrical Engineers in cooperation with Military University of Technology

Bibliography

  1. Bochenek, K. & Basista, M. Advances in processing of NiAl intermetallic alloys and composites for high temperature aerospace applications. Aerosp. Sci. 79, 136–146 (2015). https://doi.org/10.1016/j.paerosci.2015.09.003
  2. Chandler, K. A., Marine and Offshore Corrosion. (Elsevier, 1985). https://doi.org/10.1016/C2013-0-06267-6
  3. Busso, E. P. & McClintock, F. A. Mechanisms of cyclic defor-mation of NiAl single crystals at high temperatures. Acta Metall. Mater. 42, 3263–3275 (1994). https://doi.org/10.1016/0956-7151(94)90459-6
  4. Ren, W. L., Guo, J. T., Li, G. S. & Wu, J. S. The critical temperature for brittle-to-ductile transition of intermetallic compound based on NiAl. Lett. 58, 1272–1276 (2004). https://doi.org/10.1016/j.matlet.2003.09.020
  5. Porcayo-Calderon, J. et al. Effect of Cu addition on the electro-chemical corrosion performance of Ni3Al in 1.0 M H2SO4. Mater. Sci. Eng. 2015, 209286 (2015). https://doi.org/10.1155/2015/209286
  6. Huai, K., Guo, J., Gao, Q. & Yang, R. The microstructure of Au-doped NiAl–Cr(Mo) eutectic and its mechanical properties. Lett. 59, 3291–3294 (2005). https://doi.org/10.1016/j.matlet.2005.05.061
  7. Chiba, A., Hanada, S. & Watanabe, S. Improvement in ductility of Ni3Al by γ former doping. Sci. Eng. A 152, 108–113 (1992). https://doi.org/10.1016/0921-5093(92)90054-5
  8. Bhosale, A. G. & Chougule, B. K. Electrical conduction in Ni–Al ferrites. Lett. 60, 3912–3915 (2006). https://doi.org/10.1016/j.matlet.2006.03.139
  9. Darolia, R., Lahrman, D. & Field, R. The effect of iron, gallium and molybdenum on the room temperature tensile ductility of NiAl. Metall. Mater. 26, 1007–1012 (1992). https://doi.org/10.1016/0956-716X(92)90221-Y
  10. Pan, Y., Li, Y. & Zheng, Q. Influence of Ir concentration on the structure, elastic modulus and elastic anisotropy of NbIr based compounds from first-principles calculations. Alloys Compd. 789, 860–866 (2019). https://doi.org/10.1016/j.jallcom.2019.03.083
  11. Pan, Y., Wang, P. & Zhang, C.-M. Structure, mechanical, electronic and thermodynamic properties of Mo5Si3 from first-principles calculations. Int. 44, 12357–12362 (2018). https://doi.org/10.1016/j.ceramint.2018.04.023
  12. Pan, Y. First-principles investigation of the new phases and electro-chemical properties of MoSi2 as the electrode materials of lithium ion battery. Alloys Compd. 779, 813–820 (2019). https://doi.org/10.1016/j.jallcom.2018.11.352
  13. Pan, Y., Wang, S., Zhang, X. & Jia, L. First-principles investigation of new structure, mechanical and electronic properties of Mo-based silicides. Int. 44, 1744–1750 (2018). https://doi.org/10.1016/j.ceramint.2017.10.106
  14. Huang, J., Xing, H., Wen, Y. & Sun, J. Effect of Fe ternary addition on ductility of NiAl intermetallic alloy. Rare Met. 30, 316–319 (2011). https://doi.org/10.1007/s12598-011-0292-7
  15. Sugilal, G. et al. Indigenous development of induction skull melting technology for electromagnetic processing of refractory and reactive metals and alloys. Today Proc. 3, 2942–2950 (2016). https://doi.org/10.1016/j.matpr.2016.09.007
  16. Akai, H. Fast Korringa-Kohn-Rostoker coherent potential approx­imation and its application to FCC Ni-Fe systems. Phys. Condens. Matter 1, 8045–8064 (1989). https://doi.org/10.1088/0953-8984/1/43/006
  17. Nagy, Á. Density functional. Theory and application to atoms and molecules. Rep. 298, 1–79 (1998). https://doi.org/10.1016/S0370-1573(97)00083-5
  18. Zarhri, Z., Ziat, Y., El Rhazouani, O., Benyoussef, A. & Elkenz, A. Titanium atoms dimerization phenomenon and magnetic properties of titanium-antisite (TiO) and chromium doped rutile TiO2, ab-initio calculation. Phys. Chem. Solids 94, 12–16 (2016). https://doi.org/10.1016/j.jpcs.2016.03.002
  19. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
  20. Zarhri, Z. et al. Ab-initio study of magnetism behavior in TiO2 semiconductor with structural defects. Magn. Magn. Mater. 406, 212–216 (2016). https://doi.org/10.1016/j.jmmm.2016.01.029
  21. Pan, Y. & Wen, M. Noble metals enhanced catalytic activity of anatase TiO2 for hydrogen evolution reaction. J. Hydrogen Energy 43, 22055–22063 (2018). https://doi.org/10.1016/j.ijhydene.2018.10.093
  22. Pan, Y., Li, Y. Q., Zheng, Q. H. & Xu, Y. Point defect of titanium sesquioxide Ti2O3 as the application of next generation Li-ion batteries. Alloys Compd. 786, 621–626 (2019). https://doi.org/10.1016/j.jallcom.2019.02.054
  23. Pan, Y. Theoretical discovery of high capacity hydrogen storage metal tetrahydrides. J. Hydrogen Energy 44, 18153–18158 (2019). https://doi.org/10.1016/j.jallcom.2019.02.054
  24. Pan, Y. Vacancy-enhanced cycle life and electrochemical perfor-mance of lithium-rich layered oxide Li2RuO3. Int. 45, 18315–18319 (2019). https://doi.org/10.1016/j.ceramint.2019.06.044
  25. Ziat, Y., Hammi, M., Zarhri, Z., Laghlimi, C. & El Rhazouani, O. Ferrimagnetism and ferromagnetism behavior in (C, Mn) co-doped SnO2 for microwave and spintronic: Ab initio investigation. Magn. Magn. Mater. 483, 219–223 (2019). https://doi.org/10.1016/j.jmmm.2019.03.084
  26. Liu, J., Cao, J., Lin, X., Song, X. & Feng, J. Microstructure and mechanical properties of diffusion bonded single crystal to polycrystalline Ni-based superalloys joint. Des. 49, 622–626 (2013). https://doi.org/10.1016/j.matdes.2013.02.022
  27. Zheng, L., Sheng, L. Y., Qiao, Y. X., Yang, Y. & Lai, C. Influence of Ho and Hf on the microstructure and mechanical properties of NiAl and NiAl-Cr(Mo) eutectic alloy. Res. Express 6, 046502 (2019). https://doi.org/10.1088/2053-1591/aaf8ea
  28. Sheng, L. Y. et al. Microstructure characteristics and compressive properties of NiAl-based multiphase alloy during heat treatments. Sci. Eng. A 528, 8324–8331 (2011). https://doi.org/10.1088/2053-1591/aaf8ea
  29. Sheng, L. et al. Effect of Au addition on the microstructure and mechanical properties of NiAl intermetallic compound. Intermetallics 18, 740–744 (2010). https://doi.org/10.1016/j.intermet.2009.10.015
  30. Wittmann, F. H. Crack formation and fracture energy of normal and high strength concrete. Sadhana 27, 413–423 (2002). https://doi.org/10.1007/BF02706991
  31. Ziat, Y. et al. First-principles study of magnetic and electronic properties of fluorine-doped Sn98Mn0.02O2 system. J. Supercond. Novel Magn. 29, 2979–2985 (2016). https://doi.org/10.1007/s10948-016-3609-9
  32. Han, Y.-J. & Park, S.-J. Influence of nickel nanoparticles on hydro-gen storage behaviors of MWCNTs. Surf. Sci. 415, 85–89 (2017). https://doi.org/10.1016/j.apsusc.2016.12.108
  33. Tsao, T.-K. & Yeh, A.-C. The thermal stability and strength of highly alloyed Ni3 Mater. Trans. 56, 1905–1910 (2015). https://doi.org/10.2320/matertrans.M2015298

Date

03.06.2022

Type

Article

Identifier

DOI: 10.24425/opelre.2022.141707
×