Details

Title

Graphene on quartz modified with rhenium oxide as a semitransparent electrode for organic electronics

Journal title

Opto-Electronics Review

Yearbook

2022

Volume

30

Issue

4

Authors

Affiliation

Krukowski, Paweł : Department of Solid State Physics (member of National Photovoltaic Laboratory, Poland), Faculty of Physics and Applied Informatics, University of Lodz, 149/153 Pomorska St., 90–236 Łódź, Poland ; Piskorski, Michał : Department of Solid State Physics (member of National Photovoltaic Laboratory, Poland), Faculty of Physics and Applied Informatics, University of Lodz, 149/153 Pomorska St., 90–236 Łódź, Poland ; Udovytska, Ruslana : Department of Molecular Physics (member of National Photovoltaic Laboratory, Poland), Lodz University of Technology, 116 Żeromskiego St., 90– 924 Łódź, Poland ; Kowalczyk, Dorota A. : Department of Solid State Physics (member of National Photovoltaic Laboratory, Poland), Faculty of Physics and Applied Informatics, University of Lodz, 149/153 Pomorska St., 90–236 Łódź, Poland ; Lutsyk, Iaroslav : Department of Solid State Physics (member of National Photovoltaic Laboratory, Poland), Faculty of Physics and Applied Informatics, University of Lodz, 149/153 Pomorska St., 90–236 Łódź, Poland ; Rogala, Maciej : Department of Solid State Physics (member of National Photovoltaic Laboratory, Poland), Faculty of Physics and Applied Informatics, University of Lodz, 149/153 Pomorska St., 90–236 Łódź, Poland ; Dąbrowski, Paweł : Department of Solid State Physics (member of National Photovoltaic Laboratory, Poland), Faculty of Physics and Applied Informatics, University of Lodz, 149/153 Pomorska St., 90–236 Łódź, Poland ; Kozłowski, Witold : Department of Solid State Physics (member of National Photovoltaic Laboratory, Poland), Faculty of Physics and Applied Informatics, University of Lodz, 149/153 Pomorska St., 90–236 Łódź, Poland ; Łuszczyńska, Beata : Department of Molecular Physics (member of National Photovoltaic Laboratory, Poland), Lodz University of Technology, 116 Żeromskiego St., 90– 924 Łódź, Poland ; Jung, Jarosław : Department of Molecular Physics (member of National Photovoltaic Laboratory, Poland), Lodz University of Technology, 116 Żeromskiego St., 90– 924 Łódź, Poland ; Ulański, Jacek : Department of Molecular Physics (member of National Photovoltaic Laboratory, Poland), Lodz University of Technology, 116 Żeromskiego St., 90– 924 Łódź, Poland ; Matuszek, Krzysztof : Department of Molecular Physics (member of National Photovoltaic Laboratory, Poland), Lodz University of Technology, 116 Żeromskiego St., 90– 924 Łódź, Poland ; Nadolska, Aleksandra : Department of Solid State Physics (member of National Photovoltaic Laboratory, Poland), Faculty of Physics and Applied Informatics, University of Lodz, 149/153 Pomorska St., 90–236 Łódź, Poland ; Przybysz, Przemysław : Department of Solid State Physics (member of National Photovoltaic Laboratory, Poland), Faculty of Physics and Applied Informatics, University of Lodz, 149/153 Pomorska St., 90–236 Łódź, Poland ; Ryś, Wojciech : Department of Solid State Physics (member of National Photovoltaic Laboratory, Poland), Faculty of Physics and Applied Informatics, University of Lodz, 149/153 Pomorska St., 90–236 Łódź, Poland ; Toczek, Klaudia : Department of Solid State Physics (member of National Photovoltaic Laboratory, Poland), Faculty of Physics and Applied Informatics, University of Lodz, 149/153 Pomorska St., 90–236 Łódź, Poland ; Dunal, Rafał : Department of Solid State Physics (member of National Photovoltaic Laboratory, Poland), Faculty of Physics and Applied Informatics, University of Lodz, 149/153 Pomorska St., 90–236 Łódź, Poland ; Krempiński, Patryk : Department of Solid State Physics (member of National Photovoltaic Laboratory, Poland), Faculty of Physics and Applied Informatics, University of Lodz, 149/153 Pomorska St., 90–236 Łódź, Poland ; Czerwińska, Justyna : Department of Solid State Physics (member of National Photovoltaic Laboratory, Poland), Faculty of Physics and Applied Informatics, University of Lodz, 149/153 Pomorska St., 90–236 Łódź, Poland ; Le Ster, Maxime : Department of Solid State Physics (member of National Photovoltaic Laboratory, Poland), Faculty of Physics and Applied Informatics, University of Lodz, 149/153 Pomorska St., 90–236 Łódź, Poland ; Skulimowski, Marcin : Department of Intelligent Systems, Faculty of Physics and Applied Informatics, University of Lodz, 149/152 Pomorska St., 90–236 Łódź, Poland ; Kowalczyk, Paweł J. : Department of Solid State Physics (member of National Photovoltaic Laboratory, Poland), Faculty of Physics and Applied Informatics, University of Lodz, 149/153 Pomorska St., 90–236 Łódź, Poland

Keywords

graphene ; anode ; rhenium oxide ; organic light-emitting diode

Divisions of PAS

Nauki Techniczne

Coverage

e141953

Publisher

Polish Academy of Sciences (under the auspices of the Committee on Electronics and Telecommunication) and Association of Polish Electrical Engineers in cooperation with Military University of Technology

Bibliography

  1. Zou, S. J. et al. Recent advances in organic light-emitting diodes: Toward smart lighting and displays. Chem. Front. 4, 788–820 (2020). https://doi.org/10.1039/c9qm00716d
  2. Hou, S. et al. Recent advances in silver nanowires electrodes for flexible organic/perovskite light-emitting diodes. Chem. 10, 864186 (2022). https://doi.org/10.3389/fchem.2022.864186
  3. Naghdi, S., Sanchez-Arriaga, G. & Rhee, K. Y. . Tuning the work function of graphene toward application as anode and cathode. Alloys Compd. 805, 1117–1134 (2019). https://doi.org/10.1016/j.jallcom.2019.07.187
  4. Adetayo, A. E., Ahmed, T. N., Zakhidov, A. & Beall, G. W. Improvements of organic light-emitting diodes using graphene as an emerging and efficient transparent conducting electrode material. Opt. Mat. 9, 2002102 (2021). https://doi.org/10.1002/adom.202002102
  5. Krukowski, P. et al. Work function tunability of graphene with thermally evaporated rhenium heptoxide for transparent electrode applications. Eng. Mat. 22, 1900955 (2020). https://doi.org/10.1002/adem.201900955
  6. Meyer, J. et al. Metal oxide induced charge transfer doping and band alignment of graphene electrodes for efficient organic light emitting diodes. Rep. 4, 5380 (2014). https://doi.org/10.1038/srep05380
  7. Meyer, J. et al. Transition metal oxides for organic electronics: Energetics, device physics and applications. Mat. 24, 5408–5427 (2012). https://doi.org/10.1002/adma.201201630
  8. Kowalczyk, D. A. et al. Local electronic structure of stable mono-layers of α-MoO3−x grown on graphite substrate. 2D Mat. 8, 025005 (2021). https://doi.org/10.1088/2053-1583/abcf10
  9. Kowalczyk, P. J. et al. Flexible photovoltaic cells based on two-dimensional materials and their hybrids. Przeglad Elektrotechniczny 98, 117–120 (2022). (in Polish) https://doi.org/10.15199/48.2022.02.26
  10. Kowalczyk, D. A. et al. Two-dimensional crystals as a buffer layer for high work function applications: the case of monolayer MoO3. ACS Appl. Mater. Interfaces. 14, 44506–44515 (2022). https://doi.org/10.1021/acsami.2c09946
  11. Lei, Y. et al. Graphene and beyond: recent advances in two-dimensional materials synthesis, properties, and devices. ACS Nanosci. Au (2022). https://doi.org/10.1021/acsnanoscienceau.2c00017
  12. Pabianek, K. et al. Interactions of Ti and its oxides with selected surfaces: Si(100), HOPG(0001) and graphene/4H-SiC(0001). Coat. Technol. 397, 126033 (2020). https://doi.org/10.1016/j.surfcoat.2020.126033
  13. Momeni Pakdehi, D. et al. Minimum resistance anisotropy of epitaxial graphene on SiC. ACS Appl. Mater. Interfaces. 10, 6039–6045 (2018). https://doi.org/10.1021/acsami.7b18641
  14. Miao, Y. et al. Small-size graphene oxide (GO) as a hole injection layer for high-performance green phosphorescent organic light-emitting diodes. Mater. Chem. C 9, 12408–12419 (2021). https://doi.org/10.1039/d1tc02898g
  15. Chen, Y., Gong, X. L. & Gai, J. G. Progress and challenges in transfer of large-area graphene films. Sci. 3, 1500343 (2016). https://doi.org/10.1002/advs.201500343
  16. Fisichella, G. et al. Micro- and nanoscale electrical characterization of large-area graphene transferred to functional substrates. Beilstein Nanotechnol. 4, 234–242 (2013). https://doi.org/10.3762/bjnano.4.24
  17. Huet, B. & Raskin, J. P. Role of the Cu substrate in the growth of ultra-flat crack-free highly-crystalline single-layer graphene. Nanoscale 10, 21898–21909 (2018). https://doi.org/10.1039/c8nr06817h
  18. Zheng, F. et al. Critical stable length in wrinkles of two-dimensional materials. ACS Nano 14, 2137–2144 (2020). https://doi.org/10.1021/acsnano.9b08928
  19. Venables, J. A. Atomic processes in crystal growth. Sci. 299300, 798–817 (1994). https://doi.org/10.1016/0039-6028(94)90698-X
  20. Greiner, M. T. et al. The oxidation of rhenium and identification of rhenium oxides during catalytic partial oxidation of ethylene: An in-situ XPS study. Phys. Chem. 228, 521–541 (2014). https://doi.org/10.1515/zpch-2014-0002

Date

20.11.2022

Type

Article

Identifier

DOI: 10.24425/opelre.2022.141953
×