Details

Title

Study of the heat pump for a passenger electric vehicle based on refrigerant R744

Journal title

Archives of Thermodynamics

Yearbook

2022

Volume

vol. 43

Issue

No 2

Authors

Affiliation

Canteros, Maria Laura : Czech Technical University in Prague, Jugoslávských partyzánu 1580/3, 160 00 Prague 6 – Dejvice, Czech Republic ; Polansky, Jiri : ESI Group, Brojova 16, 326 00 Plzen, Czech Republic

Keywords

R744 (CO2) ; Heat pump ; Battery electric vehicle ; Thermal comfort

Divisions of PAS

Nauki Techniczne

Coverage

17-36

Publisher

The Committee of Thermodynamics and Combustion of the Polish Academy of Sciences and The Institute of Fluid-Flow Machinery Polish Academy of Sciences

Bibliography

  1. Global electric car sales by key markets, 2010-2020 – Charts – Data & Statistics IEA, https://www.iea.org/data-and-statistics/charts/global-electric-car-sales-by-key- markets-2015-2020 (accessed 17 March 2021).
  2. Rietmann N., Hügler B., Lieven T.: Forecasting the trajectory  of  electric  vehicle sales and the consequences for worldwide CO2 emissions. J. Clean. Prod. 261(2020), 121038. https://doi.org/10.1016/j.jclepro.2020.121038.
  3. Greaves , Backman H., Ellison A.B.: An empirical assessment of the feasibility of battery electric vehicles for day-to-day driving. Transport. Res. A-Pol. 66(2014), 226–237. https://doi.org/10.1016/j.tra.2014.05.011.
  4. Kempton W.: Electric vehicles: Driving range. Energ. 1 (2016), 1–2. https:// doi.org/ 10.1038/nenergy.2016.131.
  5. Klamut : Attitude towards electric vehicles. Research  on the students of a tech- nical university. Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi PAN 107(2018), 105–118 (in Polish). https://doi.org/10.24425/123719.
  6. Varga O., Sagoian A., Mariasiu F.: Prediction of electric vehicle range: A comprehensive review of current issues and challenges. Energies 12(2019), 946. https://doi.org/10.3390/en12050946.
  7. Lajunen , Suomela   J.:   Evaluation   of   energy   storage   system   requirements for hybrid mining loaders. IEEE T. Veh. Technol. 61(2012), 3387–3393. https:// doi.org/10.1109/TVT.2012.2208485.
  8. Garg ,  Chen  F.,  Zhang  J.: State-of-the-art of designs studies for batteries packs  of electric vehicles. In: Proc. IET Int. Conf. on Intelligent and Connected Vehicles (ICV 2016). https://doi.org/10.1049/cp.2016.1181.
  9. Hannan M.A., Hoque M.M., Hussain A., Yusof Y., Ker P.J.: State-of-the-art and energy management system of lithium-ion batteries in electric vehicle applica- tions: Issues and recommendations. IEEE Access 6(2018), 19362–19378. https://org/10.1109/ACCESS.2018.2817655.
  10. Petitjean C., Guyonvarch G., Benyahia M., Beauvis R.: TEWI analysis for different automotive air conditioning systems. In: Proc. The Future Car Congress 2000, 2000-01–1561. https://doi.org/10.4271/2000-01-1561.
  11. Guyonvarch G., Aloup C., Petitjean C., De  Monts  De  Savasse :  42  V  electric air conditioning systems (E-A/CS) for  low  emissions,  architecture,  comfort and safety of next generation vehicles. In: Proc. The Future Transportation Tech- nology Conf. & Expo. 2001, 2001-01–2500. https://doi.org/10.4271/2001-01-2500.
  12. Bashirpour-Bonab H.: Thermal behavior of lithium batteries used in electric  ve- hicles using phase change materials. Int. J. Energ. Res. 44(2020), 12583–12591. https://doi.org/10.1002/er.5425.
  13. Karimi G., Li X.: Thermal management of lithium-ion batteries for electric vehicles. Int. J. Energ. Res. 37(2013), 13–24. https://doi.org/10.1002/er.1956.
  14. Kizilel R., Lateef A., Sabbah R., Farid M., Selman J.R., Al-Hallaj S.:  Passive control of temperature excursion and uniformity in high-energy Li-ion bat- tery packs at high current and ambient temperature. J. Power Sources 183(2008), 1, 370–375. https://doi.org/10.1016/j.jpowsour.2008.04.050.
  15. Agarwal ,  Sarviya  R.M.:  Characterization  of  Commercial  Grade  Paraffin  wax as Latent Heat Storage material for Solar dryers. Materials Today 4(2017), 779–789, Proc. 5th Int. Conf. on Materials Processing and Characterization (ICMPC 2016). https://doi.org/10.1016/j.matpr.2017.01.086.
  16. Ettouney H., Alatiqi , Al-Sahali M., Al-Hajirie K.: Heat transfer enhance- ment in energy storage in spherical capsules filled with paraffin wax and metal beads. Energ. Convers. Manage. 47(2006), 211–228. https://doi.org/10.1016/j.enconman. 2005.04.003.
  17. Heath A.: Amendment to the Montreal protocol on substances that  deplete  the ozone layer (Kigali amendment). Int. Legal Mater. 56(2017), 193–205. https:// doi.org/10.1017/ilm.2016.2.
  18. Lee Y., Jung D.: A brief performance comparison  of  R1234yf  and  R134a  in  a bench tester for automobile applications. Appl. Therm. Eng. 35(2012), 240–242. https://doi.org/10.1016/j.applthermaleng.2011.09.004.
  19. Ozgur A.E., Kabul A., Kizilkan : Exergy  analysis  of  refrigeration  systems using an alternative refrigerant (hfo-1234yf) to R-134a. Int. J. Low-Carb. Technol. 9(2014), 56–62. https://doi.org/10.1093/ijlct/cts054.
  20. Vaghela K.: Comparative evaluation of an automobile air – conditioning  system using R134a and its alternative refrigerants. Energy Proced. 109(2017), 153–160, Int. Conf. on Recent Advancement in Air Conditioning and Refrigeration, RAAR 2016, 10-12 November 2016, Bhubaneswar. https://doi.org/ 10.1016/j.egypro. 2017. 03.083.
  21. Reasor P., Aute V., Radermacher R.: Refrigerant R1234yf performance com- parison investigation. Refrigeration and Air Conditioning Conference 8, 2010.
  22. Cho H., Lee H., Park : Performance characteristics of an automobile air condi- tioning system with internal heat exchanger using refrigerant R1234yf. Appl. Therm. Eng. 61(2013), 563–569. https://doi.org/10.1016/j.applthermaleng.2013.08.030.
  23. Direk M., Kelesoglu A., Akin A.: Drop-in  performance  analysis  and  effect  of IHX for an automotive air conditioning system with R1234yf as a replacement of R134a. SV-JME 63(2017), 314–319. https://doi.org/10.5545/sv-jme.2016.4247.
  24. Feng L., Hrnjak P.: Experimental Study of an Air Conditioning-Heat Pump Sys- tem for Electric Vehicles. In: Proc: SAE 2016 World Exhibit., 2016-01–0257. https://doi.org/10.4271/2016-01-0257.
  25. Wu , Zhou G., Wang M.: A comprehensive assessment of refrigerants for cabin heating and cooling on electric vehicles. Appl. Therm. Eng. 174(2020), 115258. https://doi.org/10.1016/j.applthermaleng.2020.115258.
  26. Maina P., Huan Z.: A review of carbon dioxide as a refrigerant in refrigeration technology. Afr. J. Sci. 111(2015). https://doi.org/10.17159/sajs.2015/20140258.
  27. Song X., Lu D., Lei Q., Cai Y., Wang , Shi J., Chen J.: Experimental study   on heating performance of a CO2 heat pump system for an electric bus. Appl. Therm. Eng. 190(2021), 116789. https://doi.org/10.1016/j.applthermaleng.2021.116789.
  28. Wu D., Hu B., Wang Z.: Vapor compression heat pumps with pure low-GWP refrigerants. Renew. Sust. Energ. Rev. 138(2021), 110571. https://doi.org/10.1016/ j.rser.2020.110571.
  29. Lorentzen G.: Revival of carbon dioxide as a refrigerant. International Journal of Refrigeration 17(1994), 292–301. https://doi.org/10.1016/0140-7007(94)90059-0.
  30. Großmann H.: Comparing the refrigerant R1234yf and CO2. ATZ Worldw 118(2016), 70. https://doi.org/10.1007/s38311-016-0119-0.
  31. Ma Y., Liu Z., Tian H.: A review of transcritical carbon dioxide heat pump and refrigeration cycles. Energy 55(2013), 156–172. https://doi.org/10.1016/j.energy. 03.030.
  32. Li W., Liu Y., Liu R., Wang , Shi J., Yu Z., Cheng L., Chen J.L.: Perfor- mance evaluation of secondary loop low-temperature heat pump system for frost pre- vention in electric vehicles. Appl. Therm. Eng. 182(2021), 115615. https://doi.org/ 10.1016/j.applthermaleng.2020.115615.
  33. Menken J.C., Ricke M., Weustenfeld  A.,  Koehler  J.:  Simulative  analysis of secondary loop automotive refrigeration systems operated with an HFC and carbon dioxide. SAE Int. J. Passeng. Cars-Mech. Syst. 9(2016), 434–440. https://doi.org/ 10.4271/2016-01-9107.
  34. Wang , Yu B., Hu J., Chen L., Shi J., Chen J.: Heating performance char- acteristics of CO2 heat pump system for electrical vehicle in a cold climate. Int. J.Refrig. 85(2018), 27–41. https://doi.org/10.1016/j.ijrefrig.2017.09.009.
  35. Wang , Wang D., Yu,B., Shi J., Chen J.: Experimental and numerical in- vestigation of a CO2 heat pump system for electrical vehicle with series gas coolerconfiguration. Int. J. Refrig. 100(2019), 156–166. https://doi.org/10.1016/j.ijrefrig. 2018.11.001.
  36. Bruno F., Belusko M., Halawa : CO2 refrigeration and heat pump systems – A comprehensive review. Energies 12(2019), 15, 2959. https://doi.org/10.3390/ en12152959.
  37. Baek J.S., Groll E.A., Lawless B.: Piston-cylinder work producing expansion device in a transcritical carbon dioxide cycle. Part I: experimental investigation. Int. J. Refrig. 28(2005), 141–151. https://doi.org/10.1016/j.ijrefrig.2004.08.006.
  38. Ferrara G., Ferrari L., Fiaschi , Galoppi  G.,  Karellas  S.,  Secchi  R.,  Tempesti D.: A small power recovery expander for heat pump COP improvement. Energ. Proced. 81(2015), 1151–1159, 69th Conf. Ital. Therm. Eng. Assoc., ATI 2014. https://doi.org/10.1016/j.egypro.2015.12.140.
  39. Kohsokabe H., Funakoshi S., Tojo K., Nakayama , Kohno K., Kurashige  K.: Basic operating characteristics of CO2 refrigeration cycles with expander- compressor unit 10 (2006). 
  40. Specific Heat Capacities of Air – (Updated 7/26/08). https://www.ohio.edu/mecha nical/thermo/property_tables/air/air_Cp_Cv.html (accessed 6 March 2021).
  41. Abas N., Kalair A.R., Khan  ,  Haider  A.,  Saleem  Z.,  Saleem  M.S.:  Natu-  ral and synthetic refrigerants, global warming: A review. Renew. Sust. Energ. Rev. 90(2018), 557–569. https://doi.org/10.1016/j.rser.2018.03.099.
  42. Bell H., Wronski J., Quoilin S., Lemort V.: Pure and pseudo-pure fluid thermophysical property evaluation and the open-source thermophysical property li- brary CoolProp. Ind. Eng. Chem. Res. 53(2014), 6, 2498–2508. https://doi.org/ 10.1021/ie4033999.
  43. Richter M., McLinden M.O., Lemmon E.W.: Thermodynamic Properties of 2,3,3,3-Tetrafluoroprop-1-ene (R1234yf): Vapor Pressure and p–ρ–T Measurements and an Equation of State. ACS Publications (2011). https://doi.org/10.1021/ je200369m.
  44. Span , Wagner W.: A new equation  of  state  for  carbon  dioxide  covering  the fluid region from  the triple-point temperature  to 1100 K at pressures  up to 800 MPa.  J. Phys. Chem. Ref. Data 25(1996), 1509–1596. https://doi.org/10.1063/1.555991.
  45. Fukuda ,  Kojima  H.,  Kondou  C.,  Takata  N.,  Koyama S.:  Experimen-   tal assessment on performance of a heat pump cycle using R32/R1234yf and R744/R32/R1234yf. In; Proc. Int. Refrigeration and Air Conditioning Conf. 2016.
  46. Shin Y., Cho H.: Performance comparison of a truck refrigeration system  with R404A, R134a, R1234yf, and R744 refrigerants under frosting conditions. Int. J. Air-Cond. Ref. 24(2016), 1650005.https://doi.org/10.1142/S201013251650005X.

Date

2022.08.02

Type

Article

Identifier

DOI: 10.24425/ather.2022.141976

Editorial Board

International Advisory Board

J. Bataille, Ecole Central de Lyon, Ecully, France

A. Bejan, Duke University, Durham, USA

W. Blasiak, Royal Institute of Technology, Stockholm, Sweden

G. P. Celata, ENEA, Rome, Italy

L.M. Cheng, Zhejiang University, Hangzhou, China

M. Colaco, Federal University of Rio de Janeiro, Brazil

J. M. Delhaye, CEA, Grenoble, France

M. Giot, Université Catholique de Louvain, Belgium

K. Hooman, University of Queensland, Australia

D. Jackson, University of Manchester, UK

D.F. Li, Kunming University of Science and Technology, Kunming, China

K. Kuwagi, Okayama University of Science, Japan

J. P. Meyer, University of Pretoria, South Africa

S. Michaelides, Texas Christian University, Fort Worth Texas, USA

M. Moran, Ohio State University, Columbus, USA

W. Muschik, Technische Universität Berlin, Germany

I. Müller, Technische Universität Berlin, Germany

H. Nakayama, Japanese Atomic Energy Agency, Japan

S. Nizetic, University of Split, Croatia

H. Orlande, Federal University of Rio de Janeiro, Brazil

M. Podowski, Rensselaer Polytechnic Institute, Troy, USA

A. Rusanov, Institute for Mechanical Engineering Problems NAS, Kharkiv, Ukraine

M. R. von Spakovsky, Virginia Polytechnic Institute and State University, Blacksburg, USA

A. Vallati, Sapienza University of Rome, Italy

H.R. Yang, Tsinghua University, Beijing, China



×