Details

Title

Fluid solid interactions – a novelty in industrial applications

Journal title

Archives of Thermodynamics

Yearbook

2022

Volume

vol. 43

Issue

No 2

Affiliation

Ochrymiuk, Tomasz : Institute of Fluid Flow Machinery Polish Academy of Science, Fiszera 14, 80-331 Gdansk, Poland ; Banaszkiewicz, Mariusz : Institute of Fluid Flow Machinery Polish Academy of Science, Fiszera 14, 80-331 Gdansk, Poland ; Banaszkiewicz, Mariusz : General Electric Power, Stoczniowa 2, 82-300 Elblag, Poland ; Lemański, Marcin : Institute of Fluid Flow Machinery Polish Academy of Science, Fiszera 14, 80-331 Gdansk, Poland ; Lemański, Marcin : Anwil Grupa Orlen, Torunska 222, 87-800 Włocławek, Poland ; Kowalczyk, Tomasz : Institute of Fluid Flow Machinery Polish Academy of Science, Fiszera 14, 80-331 Gdansk, Poland ; Ziółkowski, Paweł : Institute of Fluid Flow Machinery Polish Academy of Science, Fiszera 14, 80-331 Gdansk, Poland ; Ziółkowski, Paweł : Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland ; Ziółkowski, Piotr J. : Institute of Fluid Flow Machinery Polish Academy of Science, Fiszera 14, 80-331 Gdansk, Poland ; Hyrzyński, Rafał : Institute of Fluid Flow Machinery Polish Academy of Science, Fiszera 14, 80-331 Gdansk, Poland ; Hyrzyński, Rafał : Energa S.A. Grunwaldzka 472, 80-309 Gdansk, Poland ; Stajnke, Michał : Institute of Fluid Flow Machinery Polish Academy of Science, Fiszera 14, 80-331 Gdansk, Poland ; Bryk, Mateusz : Institute of Fluid Flow Machinery Polish Academy of Science, Fiszera 14, 80-331 Gdansk, Poland ; Kraszewski, Bartosz : Institute of Fluid Flow Machinery Polish Academy of Science, Fiszera 14, 80-331 Gdansk, Poland ; Kruk-Gotzman, Sylwia : Institute of Fluid Flow Machinery Polish Academy of Science, Fiszera 14, 80-331 Gdansk, Poland ; Kruk-Gotzman, Sylwia : Agencja Rynku Energii, Bobrowiecka 3, 00-728 Warszawa, Poland ; Froissart, Marcin : Institute of Fluid Flow Machinery Polish Academy of Science, Fiszera 14, 80-331 Gdansk, Poland ; Badur, Janusz : Institute of Fluid Flow Machinery Polish Academy of Science, Fiszera 14, 80-331 Gdansk, Poland

Authors

Keywords

Computational fluid dynamics ; Computational solids dynamics ; Arbitrary Lagrangian Eulerian description ; Fluid solid interaction ; Micro-, Nano-mechanics

Divisions of PAS

Nauki Techniczne

Coverage

75-96

Publisher

The Committee of Thermodynamics and Combustion of the Polish Academy of Sciences and The Institute of Fluid-Flow Machinery Polish Academy of Sciences

Bibliography

[1] Badur J., Ziółkowski P., Zakrzewski W., Sławinski D., Kornet S., Kowalczyk T., Hernet T., Piotrowski R., Felincjancik J., Ziółkowski P.J.: An advanced thermal-FSI approach to flow heating/coolin. J. Phys. Conf. Ser. 530(2014), 340–370.
[2] Kornet S., Ziółkowski P., Józwik P., Ziółkowski P., Stajnke M., Badur J.: Thermal-FSI modeling of flow and heat transfer in a heat exchanger based on minichanels. J. Power Technol. 97(2017), 5, 373–381.
[3] Zienkiewicz O.C., Taylor R.L.: The Finite Element Method: Vol. 1 (5th Edn.). Butterworth-Heinemann, Oxford, 2000.
[4] Schäfer M., Sieber G., Sieber R., Teschauer I.: Coupled fluid-solid problems: Examples and reliable numerical simulation. In: Trends in Computational Structural Mechanics (W.A. Wall, Ed.), CIMNE, Barcelona 2001, 654–692.
[5] Axisa F.: Modelling of Mechanical Systems – Fluid-Structure Interaction. Elsevier, Berlin 2007.
[6] Bazilevs Y., Takizawa K., Tezduyar T.E.: Computational Fluid-Structure Interaction: Methods and Applications. John Wiley & Sons, 2013.
[7] Benson D.J., Souli M.: Arbitrary Lagrangian Eulerian and Fluid-Structure Interaction: Numerical Simulation. Springer-Verlag, 2010.
[8] Bodnar T., Galdi G.P., Necasova S.: Fluid-Structure Interaction and Biomedical Applications. Springer-Verlag, 2014.
[9] Peric D., Dettmer W.G.: A computational strategy for interaction of fluid flow with spatial structures. In: Proc. 5th Int. Conf. on Computational of Shell and Spatial Structures, IASS-IACM, Bochum, 2005.
[10] Ziółkowski P.J., Ochrymiuk T., Eremyev V.: Cont. Mech. Termodyn. 33(2021), 2301–2314.
[11] Ziółkowski P., Badur J.: A theoretical, numerical and experimental verification of the Reynolds thermal transpiration law. Int. J. Numer. Meth. for Heat Fluid Fl. 28(2018), 454–480.
[12] Ziółkowski P, Badur J., Ziółkowski P.J.: An energetic analysis of a gas turbine with regenerative heating using turbine extraction at intermediate pressure-Brayton cycle advanced according to Szewalski’s idea. Energy 185(2019), 763–786.
[13] Badur J., Ziółkowski P., Kornet S., Kowalczyk T., Banas K., Bryk M., Ziółkowski P.J., Stajnke M.: Enhanced energy conversion as a result of fluid-solid interaction in micro-and nanoscale. J. Theor. Appl. Mech. 56(2018), 1, 329–332.
[14] Kowalczyk T, Badur J., Bryk M.: Energy and exergy analysis of hydrogen production combined with electric energy generation in a nuclear cogeneration cycle. Energ. Convers. Manage. 198(2019), 203–224.
[15] Badur J., Bryk M.: Accelerated start-up of the steam turbine by means of controlled cooling steam injection. Energy 184(2019), 334–356.
[16] Bryk M., Kowalczyk T., Ziółkowski P., Badur J.: The thermal effort during marine steam turbine flooding with water. AIP Conf. Proc. 2077(2019), 1, 020009.
[17] Kraszewski B., Bzymek G., Ziółkowski P., Badur J.: Extremal thermal loading of a bifurcation pipe. AIP Conf. Proc. 2077(2019), 1, 020030.
[18] Dudda W., Banaszkiewicz M., Ziółkowski P.J.: Validation plastic model with hardening of St12t. AIP Conf. Proc. 2077(2019), 020016.
[19] Szwaba R., Ochrymiuk T., Lewandowski T., Czerwinska J.: Experimental investigation of microscale effects in perforated plate aerodynamics. J. Fluids Eng. 135(2013), 12.
[20] Badur J., Ziółkowski P., Kowalczyk T., Ziółkowski P.J., Stajnke M., Bryk M., Kraszewski B.: In: Proc. 6th Conf.e on Nano- and Micromechanics, Rzeszów, 3–7 July 2019.
[21] Badur J., Karcz M., Lemanski M., Nastałek L.: Enhancement Transport Phenomena in the Navier-Stokes Shell-like Slip Layer. Computer Model. Eng. Sci. 73(2011), 299–310.
[22] Banas K., Badur J.: Influence of strength differential effect on material effort of a turbine guide vane based on thermoelastoplastic analysis. J. Therm. Stress. 40(2017), 1368–1385.
[23] Kornet S., Badur J.: Infuence of turbulence RANS models on heat transfer coefficients and stress distribution during thermal-FSI analysis of power turbine guide vane of helicopter turbine engine PZL-10W taking into account convergence of heat flux. Prog. Comput. Fluid Dyn. 17(2017), 352–360.
[24] Ziółkowski P., Kowalczyk T., Kornet S., Badur J.: On low-grade waste heat utilization from a supercritical steam power plant using an ORC-bottoming cycle coupled with two sources of heat. Energ. Convers. Manage. 146(2017), 158–173.
[25] Ziółkowski P., Badur J.: On Navier slip and Reynolds transpiration numbers. Arch. Mech. 70(2018), 269–300.
[26] Ziółkowski P., Badur J.: Navier number and transition to turbulence. J. Phys. Conf. Ser. 530(2014), 1–8.
[27] Czechowicz K, Badur J, Narkiewicz K.: Two-way FSI modelling of blood flow through CCA accounting on-line medical diagnostics in hypertension. J. Phys. Conf. Ser. 530(2014), 1–8.
[28] Badur J., Lemanski M., Kowalczyk T., Ziółkowski P., Kornet P.: Zerodimensional robust model of an SOFC with internal reforming for hybrid energy cycles. Energy 158(2018), 128–138.
[29] Badur J., Ziółkowski P.J., Ziółkowski P.: On the angular velocity slip in nanoflows. Microfluid Nanofluid 19(2015), 191–198.
[30] Badur J., Ziółkowski P., Sławinski D., Kornet S.: An approach for estimation of water wall degradation within pulverized-coal boilers. Energy 92(2015), 142–152.
[31] Felicjancik J., Ziółkowski P., Badur J.: An advanced thermal-FSI approach of an evaporation of air heat pump. Trans. Inst. Fluid-Flow Mach. 129(2015), 111–141.
[32] Badur J., Stajnke M., Ziółkowski P., Józwik P., Bojar Z., Ziółkowski P.J.: Mathematical modeling of hydrogen production performance in thermocatalytic reactor based on the intermetallic phase of Ni3Al. Arch. Thermodyn. 3(2019), 3–26.
[33] Badur J., Ziółkowski P., Kornet S., Stajnke M., Bryk M., Banas K., Ziółkowski P.J.: The effort of the steam turbine caused by a flood wave load. AIP Conf. Proc. 1822(2017), 1, 020001.
[34] Badur J., Bryk M., Ziółkowski P., Sławinski D., Ziółkowski P.J., Kornet S., Stajnke M.: On a comparison of Huber–Mises–Hencky with Burzynski- Pecherski equivalent stresses for glass body during nonstationary thermal load. AIP Conf. Proc. 1822(2017), 1, 020002.
[35] Banaszkiewicz M.: On-line monitoring and control of thermal stresses in steam turbine rotors. Appl. Therm. Eng. 94(2016), 763–776
[36] Ochrymiuk T.: Numerical analysis of microholes film/effusion cooling effectiveness. J. Therm. Sci. 26(2017), 5, 459–464.
[37] Ochrymiuk T.: Numerical prediction of film cooling effectiveness over flat plate using variable turbulent Prandtl number closures. J. Therm. Sci. 25(2016), 3, 280– 286.
[38] Ochrymiuk T.: Numerical investigations of the 3D transonic field and heat transfer at the over-tip casing in a HP-turbine stage. Appl. Therm. Eng. 103(2016), 411–418.
[39] Froissart M., Ziolkowski P., Dudda W., Badur J.: Heat exchange enhancement of jet impingement cooling with the novel humped-cone heat sink. Case Stud. Therm. Eng. 28(2021), 1, 101445101445.

Date

2022.08.02

Type

Article

Identifier

DOI: 10.24425/ather.2022.141979

Editorial Board

International Advisory Board

J. Bataille, Ecole Central de Lyon, Ecully, France

A. Bejan, Duke University, Durham, USA

W. Blasiak, Royal Institute of Technology, Stockholm, Sweden

G. P. Celata, ENEA, Rome, Italy

L.M. Cheng, Zhejiang University, Hangzhou, China

M. Colaco, Federal University of Rio de Janeiro, Brazil

J. M. Delhaye, CEA, Grenoble, France

M. Giot, Université Catholique de Louvain, Belgium

K. Hooman, University of Queensland, Australia

D. Jackson, University of Manchester, UK

D.F. Li, Kunming University of Science and Technology, Kunming, China

K. Kuwagi, Okayama University of Science, Japan

J. P. Meyer, University of Pretoria, South Africa

S. Michaelides, Texas Christian University, Fort Worth Texas, USA

M. Moran, Ohio State University, Columbus, USA

W. Muschik, Technische Universität Berlin, Germany

I. Müller, Technische Universität Berlin, Germany

H. Nakayama, Japanese Atomic Energy Agency, Japan

A. Nenarokomov, Moscow Aviation Institute, Russia

S. Nizetic, University of Split, Croatia

H. Orlande, Federal University of Rio de Janeiro, Brazil

M. Podowski, Rensselaer Polytechnic Institute, Troy, USA

A. Rusanov, Institute for Mechanical Engineering Problems NAS, Kharkiv, Ukraine

M. R. von Spakovsky, Virginia Polytechnic Institute and State University, Blacksburg, USA

A. Vallati, Sapienza University of Rome, Italy

H.R. Yang, Tsinghua University, Beijing, China



×