Details

Title

Procedure for detoxication of linuron contaminated soil based on ozonation and fluidization process

Journal title

Archives of Environmental Protection

Yearbook

2022

Volume

48

Issue

3

Authors

Affiliation

Józefczyk, Radosław : University of Rzeszów, Poland ; Antos, Piotr : Rzeszow University of Technology, Poland ; Pieniążek, Marcin : University of Rzeszów, Poland ; Balawejder, Maciej : University of Rzeszów, Poland

Keywords

inuron degradation ; soil contamination ; detoxication ; earthworms ; Eisenia foetida

Divisions of PAS

Nauki Techniczne

Coverage

48-56

Publisher

Polish Academy of Sciences

Bibliography

  1. Abu Ghalwa, N., Hamada, M., Abu Shawish, H. M. & Shubair O. (2016). Electrochemical degradation of linuron in aqueous solution using Pb/PbO2 and C/PbO2 electrodes. Arabian Journal of Chemistry 9, pp. 821–828. DOI:10.1016/j.arabjc.2011.08.006
  2. Antos, P., Józefczyk, R., Kisała, J. & Balawejder, M. (2012). Remediation of imidacloprid contaminated soil - comparison of two different reactors for the ozone treatment. Xe-nobiotics, Soil, Food and Human Health Interactions, Rzeszów ISBN 978-83-7338-785-0, pp. 147-158
  3. Assokeng, T., Noumi, G. B., Adjia, H.Z. & Sieliechi, J. M. (2021). Assessment of the Risk of Contaminating Soil Cultivation Fruits and Vegetables by Linuron Residues in the Market Gardening Zone in Marza in Ngaoundere – Cameroon. Resources and Envi-ronment 11(1): pp. 1-8 DOI:10.5923/j.re.20211101.01
  4. Balawejder, M., Antos, P., Czyjit Kuryło, S., Józefczyk, R. & Pieniążek, M. (2014). A novel metod for remediation of DDT contaminated soil. Ozone Science&Engineering, 36, pp.166-173. DOI:10.1080/01919512.2013.861324
  5. Balawejder, M., Antos, P., Józefczyk, R. & Pieniążek, M. (2016a). A method for remediation of soil contaminated with simazine. Archives of Environmental Protection, 42(3), pp. 41–46. DOI:10.1515/aep-2016-0024
  6. Balawejder, M., Józefczyk, R., Antos, P. & Pieniążek, M. (2016b). Pilot-scale Installation for Remediation of DDT-contaminated soil. Ozone: Science & Engineering, 38, pp. 272-278. DOI:10.1080/01919512.2015.1136556
  7. Barchańska, H., Czaplicka, M. & Kyzioł-Komosińska, J. (2020). Interaction of selected pesticides with mineral and organic soil components. Archives of Environmental Protection, 46 (3), pp. 80–91. DOI:10.24425/aep.2020.134538
  8. Boughattas, I., Hattab, S., Boussetta, H., Sappin-Didier, V., Viarengo, A., Banni, M. & Sforzini, S. (2016). Biomarker responses of Eisenia andrei to a polymetallic gradient near a lead mining site in North Tunisia. Environmental Pollution, 218 pp. 530-541. DOI:10.1016/j.envpol.2016.07.033
  9. Buleandra, M., Popa, D.E., David, I.G., Bacalum, E., David, V. & Ciucu, A.A. (2019). Electrochemical behavior study of some selected phenylurea herbicides at activated pencil graphite electrode. Electrooxidation of linuron and monolinuron. Microchemical Journal, 147, pp. 1109–1116. DOI:10.1016/j.microc.2019.04.042
  10. Fenoll, J., Martínez-Menchón, M., Navarro, G., Vela, N. & Navarro, S. (2013). Photocatalytic degradation of substituted phenylurea herbicides in aqueous semiconductor suspensions exposed to solar energy. Chemosphere, 91, pp. 571–578. DOI:10.1016/j.chemosphere.2012.11.067
  11. Hankard, P.K., Svendsen, C., Wright, J., Weinberg, C., Fishwick, S.K., Spurgeon, D.J. & Weeks, J.M. (2004). Biological assessment of contaminated land using earthworm biomarkers in support of chemical analysis. Sci. Total Environ., 330, pp. 9-20. DOI:10.1016/j.scitotenv.2003.08.023
  12. Katsumata, H., Kobayashi, T., Kaneco, S., Suzuki, T. & Ohta, K. (2011) Degradation of linuron by ultrasound combined with photo-Fenton treatment. Chemical Engineering Journal, 166, pp. 468–473. DOI:10.1016/j.cej.2010.10.073
  13. Kuo, S. L. & Wu, E.M.-Y. (2021). Remediation Efficiency of the In Situ Vitrification Method at an Unidentified-Waste and Groundwater Treatment Site. Water, 13, 3594. DOI:10.3390/w13243594
  14. Liu, T., Liu, Y., Fang, K., Zhang, X. & Wang, X. (2020). Transcriptome, bioaccumulation and toxicity analyses of earthworms (Eisenia fetida) affected by trifloxystrobin and trifloxystrobin acid. Environmental Pollution, 265, Part B, 115100. DOI:10.1016/j.envpol.2020.115100
  15. Lowe, C. N. & Butt, K. R. (2007). Earthworm culture, maintenance and species selection in chronic ecotoxicological studies: A critical review. European Journal of Soil Biology, 43, pp. 281-288. DOI:10.1016/j.ejsobi.2007.08.028
  16. Lowe, C.N. & Butt, K.R. (2005). Culture techniques for soil dwelling earthworms: a review. Pedobiologia, 49 (5), pp. 401-413. DOI:10.1016/j.pedobi.2005.04.005
  17. Moore, M.N. (1976). Cytochemical demonstration of latency of lysosomal hydrolases in the digestive cells of the common mussel, Mytilus edulis, and changes induced by thermal stress. Cell. Tissue Res. 175, pp. 279-287. DOI:10.1007/BF00218706
  18. Mussatto, S.I. (2016). Biomass Fractionation Technologies for a Lignocellulosic Feedstock Based Biorefinery, ISBN 978-0-12-802323-5 pp. 410-411
  19. OECD Guideline For Testing Of Chemicals No. 207: Earthworm, Acute Toxicity Tests (Eisenia fetida/Eisenia Andrei), OECD 1984. DOI:10.1787/9789264070042-en
  20. OECD Guideline For Testing Of Chemicals No. 222: Earthworm Reproduction Test (Eisenia fetida/Eisenia Andrei), OECD 2004 https://www.oecd.org/env/ehs/testing/Draft-Updated-Test-Guildeline-222-Earthworm-reproduction-Test.pdf
  21. Quan, X., Zhao, X., Chen, S., Zhao, H., Chen, J. & Zhao, Y. (2005). Enhancement of p,p’-DDT photodegradation on soil surfaces using TiO2 induced by UV-light, Chemosphere, 60, pp. 266-273. DOI:10.1016/j.chemosphere.2004.11.044
  22. Rao, Y.F. & Chu, W. (2010). Degradation of linuron by UV, ozonation, and UV/O3 processes—Effect of anions and reaction mechanism. Journal of Hazardous Materials, 180, pp. 514–523. DOI:10.1016/j.jhazmat.2010.04.063
  23. Rosal, R., Gonzalo, M. S., Rodríguez, A., Perdigón-Melón, J.A. & García-Calvo, E. (2010). Catalytic ozonation of atrazine and linuron on MnOx/Al2O3 and MnOx/SBA-15 in a fixed bed reactor. Chemical Engineering Journal, 165, pp. 806–812. DOI:10.1016/j.cej.2010.10.020
  24. Sforzini, S., Moore, M.N., Boeri, M., Bencivenga, M. & Viarengo, A. (2015). Effects of PAHs and dioxins on the earthworm Eisenia andrei: A multivariate approach for biomarker interpretation. Environmental Pollution, 196 pp. 60-71. DOI:10.1016/j.envpol.2014.09.015
  25. Svendsen, C., Spurgeon, D.J., Hankard, P.K. & Weeks, J.M. (2004). A review of lysosomal membrane stability measured by neutral red retention: is it a workable earthworm biomarker?. Ecotoxicology and Environmental Safety, 57, pp. 20–29. DOI:10.1016/j.ecoenv.2003.08.009
  26. Svendsen, C., Meharg, A.A., Freestone, P. & Weeks, J.M. (1996). Use of an earthworm lysosomal biomarker for the ecological assessment of pollution from an industrial plastics fire. Soil Ecology, 3, pp. 99-107. DOI:10.1016/0929-1393(95)00085-2
  27. Spirhanzlova, P., De Groef, B., Nicholson, F.E., Grommen, S.V.H., Marras, G., Sébillot, A., Demeneix, B.A., Pallud-Mothré, S., Lemkine, G.F., Tindall, A.J. & Du Pasquier, D. (2017). Using short-term bioassays to evaluate the endocrine disrupting capacity of the pesticides linuron and fenoxycarb. Comparative Biochemistry and Physiology, Part C, 200, pp. 52–58. DOI:10.1016/j.cbpc.2017.06.006
  28. Swarcewicz, M., Gregorczyk, A. & Sobczak, J. (2013). Comparison of linuron degradation in the presence of pesticide mixtures in soil under laboratory conditions. Environ Monit Assess, 185, pp. 8109–8114. DOI:10.1007/s10661-013-3158-7
  29. Zhao, S., Wang, Y. & Duo, L. (2021). Biochemical toxicity, lysosomal membrane stability and DNA damage induced by graphene oxide in earthworms. Environmental Pollution, 269, 116225. DOI:10.1016/j.envpol.2020.116225

Date

2022.09.19

Type

Article

Identifier

DOI: 10.24425/aep.2022.142689

DOI

10.24425/aep.2022.142689

Abstracting & Indexing

Abstracting & Indexing


Archives of Environmental Protection is covered by the following services:


AGRICOLA (National Agricultural Library)

Arianta

Baidu

BazTech

BIOSIS Citation Index

CABI

CAS

DOAJ

EBSCO

Engineering Village

GeoRef

Google Scholar

Index Copernicus

Journal Citation Reports™

Journal TOCs

KESLI-NDSL

Naviga

ProQuest

SCOPUS

Reaxys

Ulrich's Periodicals Directory

WorldCat

Web of Science

×