Details
Title
The Melting Process and its Impact on the Properties of High-Chromium Cast Iron and the Economic CalculationJournal title
Archives of Foundry EngineeringYearbook
2023Volume
vol. 23Issue
No 4Authors
Affiliation
Mędoń, Jan : AGH University of Krakow, al. Adama Mickiewicza 30, 30-059 Kraków, Poland ; Szczęsny, Andrzej : AGH University of Krakow, al. Adama Mickiewicza 30, 30-059 Kraków, Poland ; Ziółkowski, Eugeniusz : AGH University of Krakow, al. Adama Mickiewicza 30, 30-059 Kraków, Poland ; Guzik, Edward : AGH University of Krakow, al. Adama Mickiewicza 30, 30-059 Kraków, Poland ; Kopyciński, Dariusz : AGH University of Krakow, al. Adama Mickiewicza 30, 30-059 Kraków, Poland ; Czarny, M. : Odlewnia „Świdnica” Sp. z o.o., Świdnica ul. Kliczkowska 53, PolandKeywords
Metal batch ; High chromium cast iron ; Modification ; Althoff-Radtke test ; Impact strengthDivisions of PAS
Nauki TechniczneCoverage
54-64Publisher
The Katowice Branch of the Polish Academy of SciencesBibliography
[1] Podrzucki, C. (1991). Cast iron. Structure Features Application Volumes 1 and 2. Wydawnictwo ZG STOP. (in Polish).[2] Zhou, J. (2009). Colour metallography of cast iron. China Foundry. 6(2), 152-163.
[3] Guoxiong, S., Xiaoming, Z. & Zhidong, L. (1989). Microstructure and properties of grey cast iron. Spherical Graphite Cast Iron. 50-62.
[4] Miyake, H. & Okada, A. (1998). Nucleation and growth of primary austenite in hypoeutectic cast iron. AFS Transactions. 106, 581-587.
[5] Siekaniec, D., Kopyciński, D., Guzik, E. & Szczęsny, A. (2022). Effect of inoculation treatment on number of primary austenite grains in hypoeutectic chromium cast iron: EBSD imaging and mathematical structure prediction. Materials. 15(18), 6318, 1-14. https://doi.org/10.3390/ma15186318.
[6] Guzik, E., Kopyciński, D., Burbelko, A. & Szczęsny, A (2023). Evaluation of the number of primary grains in hypoeutectic chromium cast iron with different wall thickness using the ProCAST program. Materials. 16(8), 3217, 1-15. https://doi.org/10.3390/ma16083217.
[7] Döpp, R. (1975). Solidification and graphite formation in white cast iron. In proceedings of the Second International Symposium on the Metallurgy of Cast Iron, Geneva, Switzerland, May 29-31, 1974. Switzerland: Georgi Publishing Company.
[8] Tabrett, C.P., Sare, I.R. & Ghomashchi, M.R. (1996). Microstructure-property relationships in high chromium white iron alloys. International Materials Reviews. 41(2), 59-82. https://doi.org/10.1179/imr.1996.41.2.59.
[9] Filipovic, M., Kamberovic, Z., Korac, M., Gavrilovski, M. (2013). Microstructure and mechanical properties of Fe–Cr–C–Nb white cast irons. Materials & Design. 47, 41-48. https://doi.org/10.1016/j.matdes.2012.12.034.
[10] Stefanescu, D.M. (1998). Solidification of eutectic alloys: Cast iron. In: ASM Handbook, Vol. 15 Casting, ASM International, Metals Park, OH.
[11] da Silva, A.E. Rabelo de Melo I.N., Pinheiro I.P., da Silva L. R. (2020). Characterisation and machinability of high chromium hardened white cast iron with and without the addition of niobium. Wear. 460-461, 15, 203-463. https://doi.org/10.1016/j.wear.2020.203463.
[12] Kopyciński, D., Kawalec, M., Szczȩsny, A., Gilewski, R. & Piasny, S. (2013). Analysis of the structure and abrasive wear resistance of white cast iron with precipitates of carbides Archives of Metallurgy and Materials. 58(3), 973-976. DOI: 10.2478/emm-2013-0113.
[13] Penagos, J.J., Pereira, J.I., Machado, P.C., Albertin, E. & Sinatora, A. (April 2017). Synergetic effect of niobium and molybdenum on abrasion resistance of high chromium cast irons. Wear. 376-377, B, 983-992. https://doi.org/10.1016/ j.wear.2017.01.103.
[14] Dojka, M., Dojka, R., Studnicki, A., Stawarz, M. (2018). Influence of Ti and Re on primary crystallization and wear resistance of chromium cast iron. In 73rd World Foundry Congress “Creative Foundry”: WFC 2018 – Proceedings, pp. 61-62.
[15] Dojka, M., Dojka, R., Stawarz, M., Studnicki, A. (2019). Influence of Ti and REE on primary crystallization and wear resistance of chromium cast iron. Journal of Materials Engineering and Performance. 28(7), 4002-4011. https://doi.org/10.1007/s11665-019-04088-x. [16] Studnicki, A., Dojka, R., Gromczyk, M., Kondracki, M. (2016). Influence of titanium on crystallization and wear resistance of high chromium cast iron. Archives of Foundry Engineering. 16(1), 117-123. DOI: 10.1515/afe-2016-0014.
[17] Tęcza, G. (2023). Changes in abrasion resistance of cast Cr-Ni steel as a result of the formation of niobium carbides in alloy matrix. Materials. 16(4), 1726, 1-14. https://doi.org/10.3390/ma16041726.
[18] Tęcza, G. (2022). Changes in microstructure and abrasion resistance during miller test of hadfield high-manganese cast steel after the formation of vanadium carbides in alloy matrix. Materials. 15(3), 1021, 1-14. https://doi.org/10.3390/ ma16041726.
[19] Dorula, J. (2013). Macro- and microstructure formation of modified cast iron with low sulfur content. PhD thesis. Kraków. Akademia Górniczo-Hutnicza. (in Polish). [20] Podrzucki, C., Kalata, C. (1976). Metallurgy and cast iron foundry. Katowice: Wyd. Śląsk. (in Polish).
[21] Jura, S., Cybo, J. & Jura, Z. (2001). Hot cracking of steel castings is still an unresolved problem. Archives of Foundry. 1(2/2), 512-519. (in Polish).
[22] Collective work. (2013). Foundryman's Guide. Contemporary foundry. Tom 1. Kraków: Wydawnictwo STOP. (in Polish).
[23] Data provided by Sylwia Rosińska Head of Purchasing Department of "Świdnica" Foundry Ltd.