Details

Title

Effect of thin obstacles heights on heat transfer and flow characteristics in microchannels

Journal title

Archive of Mechanical Engineering

Yearbook

2023

Volume

vol. 70

Issue

No 4

Affiliation

Kmiotek, Małgorzata : Rzeszow University of Technology, The Faculty of Mechanical Engineering and Aeronautics, Rzeszow, Poland ; Smusz, Robert : Rzeszow University of Technology, The Faculty of Mechanical Engineering and Aeronautics, Rzeszow, Poland

Authors

Keywords

micro- ; computational fluid dynamics ; microchannel ; heat transfer

Divisions of PAS

Nauki Techniczne

Coverage

553-566

Publisher

Polish Academy of Sciences, Committee on Machine Building

Bibliography

[1] Y.-T. Yang and S. Yang. Numerical study of turbulent flow in two-dimensional channel with surface mounted obstacle. International Journal of Heat and Mass Transfer, 37(18):2985–2991, 1994. doi: 10.1016/0017-9310(94)90352-2.
[2] K. Sivakumar, T. Sampath Kumar, S. Sivasankar, V. Ranjithkumar, and A. Ponshanmugakumar. Effect of rib arrangements on the flow pattern and heat transfer in internally ribbed rectangular divergent channels. Materials Today: Proceedings, 46(9):3379–3385, 2021. doi: 10.1016/j.matpr.2020.11.548.
[3] T.M. Liou, S.W. Chang, and S.P. Chan. Effect of rib orientation on thermal and fluid-flow features in a two-pass parallelogram channel with abrupt entrance. International Journal of Heat and Mass Transfer, 116:152–165, 2018. doi: 10.1016/j.ijheatmasstransfer.2017.08.094.
[4] W. Yang, S. Xue, Y. He, and W. Li. Experimental study on the heat transfer characteristics of high blockage ribs channel. Experimental Thermal and Fluid Science, 83:248–259, 2017. doi: 10.1016/j.expthermflusci.2017.01.016.
[5] F.B. Teixeira, M.V. Altnetter, G. Lorenzini, B.D. do A. Rodriguez, L.A.O. Rocha, L.A. Isoldi, and E.D. dos Santos. Geometrical evaluation of a channel with alternated mounted blocks under mixed convection laminar flows using constructal design. Journal of Engineering Thermophysics, 29(1): 92–113, 2020. doi: 10.1134/S1810232820010087.
[6] A. Korichi and L. Oufer. Numerical heat transfer in a rectangular channel with mounted obstacles on upper and lower walls. International Journal of Thermal Sciences, 44(7):644–655, 2005. doi: 10.1016/j.ijthermalsci.2004.12.003.
[7] L.C. Demartini, H.A. Vielmo, and S.V. Möller. Numeric and experimental analysis of the turbulent flow through a channel with baffle plates. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 26(2):153–159, 2004. doi: 0.1590/S1678-58782004000200006.
[8] Y.T. Yang and C.Z. Hwang. Calculation of turbulent flow and heat transfer in a porous-baffled channel. International Journal of Heat and Mass Transfer, 46(5):771–780, 2003. doi: 0.1016/S0017-9310(02)00360-5.
[9] G. Wang, T. Chen, M. Tian, and G. Ding. Fluid and heat transfer characteristics of microchannel heat sink with truncated rib on sidewall. International Journal of Heat and Mass Transfer, 148:119142, 2020. doi: 10.1016/j.ijheatmasstransfer.2019.119142.
[10] S. Mahjoob and S. Kashkuli. Thermal transport analysis of injected flow through combined rib and metal foam in converging channels with application in electronics hotspot removal. International Journal of Heat and Mass Transfer, 177:121223, 2021. doi: 10.1016/j.ijheatmasstransfer.2021.121223.
[11] L. Chai, G.D. Xia, and H.S. Wang. Numerical study of laminar flow and heat transfer in microchannel heat sink with offset ribs on sidewalls. Applied Thermal Engineering, 92:32–41, 2016. doi: 10.1016/j.applthermaleng.2015.09.071.
[12] Y. Yin, R. Guo, C. Zhu, T. Fu, and Y. Ma. Enhancement of gas-liquid mass transfer in microchannels by rectangular baffles. Separation and Purification Technology, 236:116306, 2020. doi: 10.1016/j.seppur.2019.116306.
[13] A. Behnampour O.A. Akbari, M.R. Safaei, M. Ghavami, A. Marzban, G.A.S. Shabani, M. Zarringhalam, and R. Mashayekhi. Analysis of heat transfer and nanofluid fluid flow in microchannels with trapezoidal, rectangular and triangular shaped ribs. Physica E: Low-Dimensional Systems and Nanostructures, 91:15–31, 2017. doi: 10.1016/j.physe.2017.04.006.
[14] M.R. Gholami, O.A. Akbari, A. Marzban, D. Toghraie, G.A.S. Shabani, and M. Zarringhalam. The effect of rib shape on the behavior of laminar flow of {oil/MWCNT} nanofluid in a rectangular microchannel. Journal of Thermal Analysis and Calorimetry, 134(3):1611–1628, 2018. doi: 10.1007/s10973-017-6902-3.
[15] O.A. Akbari, D. Toghraie, A. Karimipour, M.R. Safaei, M. Goodarzi, H. Alipour, and M. Dahari. Investigation of rib’s height effect on heat transfer and flow parameters of laminar water-{Al2O3} nanofluid in a rib-microchannel. Applied Mathematics and Computation, 290:135–153, 2016. doi: 10.1016/j.amc.2016.05.053.
[16] B. Mondal, S. Pati, and P.K. Patowari. Analysis of mixing performances in microchannel with obstacles of different aspect ratios. Journal of Process Mechanical Engineering, 233(5):1045–1051, 2019. doi: 10.1177/0954408919826748.
[17] L. Chai, G.D. Xia, and H.S. Wang. Parametric study on thermal and hydraulic characteristics of laminar flow in microchannel heat sink with fan-shaped ribs on sidewalls -- Part 2: Pressure drop. International Journal of Heat and Mass Transfer, 97:1081–1090, 2016. doi: 10.1016/j.ijheatmasstransfer.2016.02.076.
[18] P. Pontes, I. Gonçalves, M. Andredaki, A. Georgoulas, A.L.N. Moreira, and A.S. Moita. Fluid flow and heat transfer in microchannel devices for cooling applications: Experimental and numerical approaches. Applied Thermal Engineering, 218:119358, 2023. doi: 10.1016/j.applthermaleng.2022.119358.
[19] B.K. Srihari, A. Kapoor, S. Krishnan, and S. Balasubramanian. Computational fluid dynamics studies on the flow of fluids through microchannel with intentional obstacles. AIP Conference Proceedings, 2516(1):170003. doi: 10.1063/5.0108550.
[20] T. Grzebyk and A. Górecka-Drzazga. Vacuum microdevices. Bulletin of the Polish Academy of Sciences: Technical Sciences, 60(1):19–23, 2012. doi: 10.2478/v10175-012-0004-y.
[21] M. Kmiotek and A. Kucaba-Piętal. Influence of slim obstacle geometry on the flow and heat transfer in microchannels. Bulletin of the Polish Academy of Sciences: Technical Sciences, 66(2):111–118, 2018. doi: 10.24425/119064.
[22] S. Baheri Islami, B. Dastvareh, and R. Gharraei. An investigation on the hydrodynamic and heat transfer of nanofluid flow, with non-Newtonian base fluid, in micromixers. International Journal of Heat and Mass Transfer, 78:917–929, 2014. doi: 10.1016/j.ijheatmasstransfer.2014.07.022.
[23] S. Baheri Islami, B. Dastvareh, and R. Gharraei. Numerical study of hydrodynamic and heat transfer of nanofluid flow in microchannels containing micromixer. International Communications in Heat and Mass Transfer, 43:146–154, 2013. doi: 10.1016/j.icheatmasstransfer.2013.01.002.
[24] C.K. Chung, C.Y. Wu, and T.R. Shih. Effect of baffle height and reynolds number on fluid mixing, Microsystem Technologies, 14(9-11):1317–1323, 2008, doi: 10.1007/s00542-007-0511-1.
[25] I. Adina R&D, Theory and Modling Guide, Vollume III: ADINA CFD&FSI, Report ARD. 2019.
[26] P.J. Roache. Verification and Validation in Computational Science and Engineering. Hermosa Publishers, 1998.

Date

23.12.2023

Type

Article

Identifier

DOI: 10.24425/ame.2023.148699
×