Details
Title
Study on Mn Volatilization Behavior During Vacuum Melting of High-manganese SteelJournal title
Archives of Foundry EngineeringYearbook
2024Volume
vol. 24Issue
No 2Authors
Affiliation
Lei, Jialiu : Hubei Polytechnic University, China ; Fu, Yongjun : Hubei Polytechnic University, China ; Xiong, Li : Hubei Guoan Special Steel Inspection and Testing Co., Ltd.Keywords
Mn volatilization behavior ; Vacuum melting ; Thermodynamics ; High-manganese steelDivisions of PAS
Nauki TechniczneCoverage
110-116Publisher
The Katowice Branch of the Polish Academy of SciencesBibliography
[1] Hu, B., Luo, H.W., Yang, F. & Dong, H. (2017). Recent progress in medium-Mn steels made with new designing strategies, a review. Journal of Materials Science & Technology. 33(12), 1457-1464. DOI:10.1016/j.jmst.2017.06.017.[2] Frommeyer, G. & Brüx, U. (2006). Microstructures and mechanical properties of high-strength Fe-Mn-Al-C light-weight triplex steels. Steel Research International. 77(9-10), 627-633. DOI:10.1002/srin.200606440.
[3] Du, B., Li, Q.C., Zheng, C.Q., Wang, S.Z., Gao, C. & Chen, L.L. (2023). Application of lightweight structure in automobile bumper beam: a review. Materials. 16(3), 967, 1-25. DOI:10.3390/ma16030967.
[4] Frommeyer, G., Brux, U. & Neumann, P. (2003). Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes. ISIJ International. 43(3), 438-446. DOI:10.2355/isijinternational.43.438.
[5] Kalandyk, B. & Zapała, R. (2013). Effect of high-manganese cast steel strain hardening on the abrasion wear resistance in a mixture of SiC and water. Archives of Foundry Engineering. 13(4), 63-66. DOI:10.2478/afe-2013-0083.
[6] Jia, Q.X., Chen, L., Xing, Z.B., Wang, H.Y., Jin, M., Chen, X., Choi, H. & Han, H. (2022). Tailoring hetero-grained austenite via acyclic thermomechanical process for achieving ultrahigh strength-ductility in medium-Mn steel. Scripta Materialia. 217, 114767, 1-6. DOI:10.1016/j.scriptamat.2022.114767.
[7] Singh, S. & Nanda, T. (2014). A review: production of third generation advance high strength steels. International Journal for Scientific Research & Development. 2(9), 388-392. DOI:10.13140/RG.2.2.28003.66083.
[8] Nanda, T., Singh, V., Singh, V., Chakraborty, A. & Sharma, S. (2019). Third generation of advanced high-strength steels: processing routes and properties. SAGE Publications. 233(2), 209-238. DOI:10.1177/1464420716664198.
[9] Grässel, O., Frommeyer, G., Derder, C. & Hofmann, H. (1997). Phase transformations and mechanical properties of Fe-Mn-Si-Al TRIP-steels. Le Journal de Physique IV. 7(C5), 383-388. DOI:10.1051/jp4:1997560.
[10] Grässel, O., Krüger, L., Frommeyer, G. & Meyer, L.W. (2000). High strength Fe-Mn-(Al,Si) TRIP/TWIP steels development-properties-application. International Journal of Plasticity. 16(10-11), 1391-1409. DOI:10.1016/S0749-6419(00)00015-2.
[11] Dumay, A., Chateau, J.P., Allain, S., Migot, S. & Bouaziz, O. (2008). Influence of addition elements on the stacking-fault energy and mechanical properties of an austenitic Fe-Mn-C steel. Materials Science & Engineering A. 483-484, 184-187. DOI:10.1016/j.msea.2006.12.170.
[12] Lee, J.H., Sohn, S.S., Hong, S.M., Suh, B.C., Kim, S.K. Lee, B.J., Kim, N.J. & Lee, S.H. (2014). Effects of Mn addition on tensile and charpy impact properties in austenitic Fe-Mn-C-Al-based steels for cryogenic applications. Metallurgical & Materials Transactions A. 45(12), 5419-5430. DOI:10.1007/s11661-014-2513-9.
[13] Sohn, S.S., Hong, S.H., Lee, J.H., Suh, B.C., Kim, S.K., Lee, B.J., Kim, N.J. & Lee, S.H. (2015). Effects of Mn and Al contents on cryogenic-temperature tensile and charpy impact properties in four austenitic high-Mn steels. Acta Materialia. 100, 39-52. DOI:10.1016/j.actamat.2015.08.027.
[14] Zagrebelnyy, D. & Krane, M.J. (2009). Segregation development in multiple melt vacuum arc remelting. Metallurgical and Materials Transactions B. 40, 281-288. DOI:10.1007/s11663-008-9163-5.
[15] Shi, Z.Y., Wang, H., Gao, Y.H., Wang, Y.T., Yu, F., Xu, H.F., Zhang, X.D., Shang, C. & Cao, W.Q. (2022). Improve fatigue and mechanical properties of high carbon bearing steel by a new double vacuum melting route. Fatigue & Fracture of Engineering Materials and Structures, 45(7), 1995-2009. DOI:10.1111/ffe.13716.
[16] Chu, J.H., Bao, Y.P., Li, X., Wang, M. & Gao, F. (2021). Kinetic study of Mn vacuum evaporation from Mn steel melts. Separation and Purification Technology. 255, 117698, 1-9. DOI:10.1016/j.seppur.2020.117698.
[17] Klapczynski, V., Courtois, M., Meillour, R., Bertrand, E., Maux, D.L., Carin, M., Pierre, T., Masson, P.L. & Paillard, P. (2022). Temperature and time dependence of manganese evaporation in liquid steels. multiphysics modelling and experimental confrontation. Scripta Materialia. 221, 114944, 1-6. DOI:10.1016/j.scriptamat.2022.114944.
[18] Chu, J.H. & Bao, Y.P. (2020). Volatilization behavior of manganese from molten steel with different alloying methods in vacuum. Metals. 10(10), 1348, 1-10. DOI:10.3390/met10101348.
[19] Dai, Y.N. & Yang, B. (2000). Vacuum Metallurgy of Nonferrous Metal Materials.(1st ed.). Beijing: Metallurgical Industry Press.
[20] Liang, Y.J. & Che, Y.C. (1993). Data Book on Thermodynamics of Inorganic Matter. Shenyang: Northeastern University Press.
[21] Wagner, C. (1973). The activity coefficient of oxygen and other nonmetallic elements in binary liquid alloys as a function of alloy composition. Acta Metallurgica. 21(9), 1297-1303. DOI:10.1016/0001-6160(73)90171-5.
[22] Chen, J.X. (2010). Common Charts and Databook for Steelmaking. (2nd ed.). Beijing: Metallurgical Industry Press.
[23] Huang, X.H. (2001). Theory of Iron and Steel Metallurgy. (3rd ed.). Beijing: Metallurgical Industry Press.
[24] Dai, Y.N., Xia, D.K. & Chen, Y. (1994). Evaporation of metals in vacuum. Journal of Kunming Institute of Technology. 19(6), 26-32. (in Chinese)
[25] Krapivsky, P.L., Redner, S. & Ben-Naim, E. (2010). A Kinetic View of Statistical Physics. Cambridge: Cambridge University Press.
[26] Safarian, J. & Engh, T.A. (2013). Vacuum evaporation of pure metals. Metallurgical and Materials Transactions A. 44(2), 747-753. DOI:10.1007/s11661-012-1464-2.