Details
Title
An Influence of Nitrogen Corrosion on Microstructural and Mechanical Features of the X5CrNi18-10 SteelJournal title
Archives of Foundry EngineeringYearbook
2024Volume
vol. 24Issue
No 3Affiliation
Kantoríková, E. : University of Žilina, Slovak RepublicAuthors
Keywords
Protective atmosphere ; Corrosion ; Anti-corrosive steelsDivisions of PAS
Nauki TechniczneCoverage
69-75Publisher
The Katowice Branch of the Polish Academy of SciencesBibliography
[1] Krajewski, S.J., Gutsche, W., & Urbanowicz, K. (2023). Analysis of X5CrNi18-10 (AISI 304) steel susceptibility to hot cracking in welded joints based on determining the range of high-temperature brittleness and the nil-strength temperature. Metals. 13(10), 1633, 1-19. https://doi.org/10.3390/met13101633.
[2] Zalecki, W., Wrozyna, A., Łapczynski, Z. & Molenda, R. (2016). Influence of Microstructure on Some Properties of AHSS Steels. Journal of Matallic Materials. 68, 19-25. (in Polish).
[3] Kurc-Lisiecka, A., Ozgowicz, W., Kalinowska-Ozgowicz, E. & Maziarz, W. (2016). The microstructure of metastable austenite in X5CrNi18- 10 steel after its strain-induced martensitic transformation. Material in Technologije. 50(6), 837-843.
[4] Vaško, A. (2014). Fatigue life of synthetic nodular cast irons at high frequency loading. Scientific Papers of the University of Pardubice Series B. 19, 121-128.
[5] Fojt-Dymara, G., Opiela, M. & Borek, W. (2022). Susceptibility of High-Manganese Steel to High-Temperature Cracking. Materials. 15(22), 8198, 1-12. https://doi.org/10.3390/ma15228198.
[6] Kawulok, R., Schindler, I., Navrátil, H., Ševčák, V., Sojka, J., Konečná, K. & Chmiel, B. (2020). Hot formability of heat-resistant stainless steel X15CrNiSi20-12. Archives of Metallurgy and Materials. 65, 727-734. DOI: 10.24425/amm.2020.132812.
[7] Švec, P. (2010). Construction materials. STU Bratislava. ISBN 978-80-227-3386-1.
[8] Siddique, A.G., Vijaya, R.B., Elanchezhian, C., Siddhartha, D. & Ramanan, N. (2019). Analysis of the friction welding mechanism of low carbon steel–stainless steel and aluminium—copper. Materials Today: Proceedings. 16, 766-775. https://doi.org/10.1016/j.matpr.2019.05.157.
[9] Kawulok, P., Schindler, I., Smetana, B., Moravec, J., Mertová, A., Drozdová, L’., Kawulok, R., Opěla, P. & Rusz, S. (2020). The relationship between nil-strength temperature, zero strength temperature and solidus temperature of carbon steels. Metals. 10(3), 399, 1-14. https://doi.org/10.3390/met10030399.
[10] Skočovský, P., Bokuvka, O., Konečná, R., & Tillová, E (2014). Material Science. EDIS - vydavateľstvo Žilinskej univerzity, 349. ISBN 978-80-554-0871-2. (in Slovak).
[11] Macek, W., Pejkowski, Ł., Branco, R., Nejad, R.M. & Zak, K. (2022). Fatigue fracture surface metrology of thin-walled tubular austenitic ˙ steel specimens after asynchronous loadings. Engineering Failure Analysis. 138, 106354. https://doi.org/10.1016/j.engfailanal.2022.106354.
[12] Adamiec, J. (2023). Assessment of the hot-cracking susceptibility of welded joints of the 7CrMoVTiB10-10 bainitic steel used in heat exchangers. Energies. 16(1), 162, 1-21. https://doi.org/10.3390/en16010162.
[13] Dossett, J., Boyer, H. (2006). Practical Heat Treating. Second Edition. Ohio: ASM International. ISBN: 0-87170-829-9.
[14] Kocich, J., Tuleja, S. (1983). Corrosion and protection of metals. Bratislava: Alfa.
[15] Rajasekhara, S., Karjalainen, L.P., Kyröläinen, A. & Ferreira, P.J. (2010). Microstructure evolution in nano/submicron grained AISI 301LN stainless steel. Materials Science and Engineering. 527A, 1986–1996. DOI:10.1016/j.msea.2009.11.037. https://doi.org/10.1016/j.msea.2009.11.037.
[16] Blicharski, M. & Gorczyca, S. (1979). Structural inhomogeneity of deformed austenitic stainless steel. Metal Science. 12(7), 303-312. DOI:10.1179/msc.1978.12.7.303.
[17] Fabian, P., Kečková, E., Beták, P. (2007). Heat treatment of metals. Svidník: Tlačiareň svidnícka, s.r.o. ISBN 978-80-969592-7-3.
[18] Lee, W.S. & Lin, C.F. (2000). The morphologies and characteristics of impact-induced martensite in 304L stainless steel. Scripta Materialia. 43(8), 777–782. DOI:10.1016/S1359-6462(00)00487-5
[19] Das, A., Sivaprasad, S., Ghosh, M., Chakraborti, P.C. & Tarafder, S. (2008). Morphologies and characteristics of deformation induced martensite during tensile deformation of 304 LN stainless steel. Materials Science and Engineering. 486A (1-2), 283-286, DOI:10.1016/j.msea.2007.09.005.
[20] Skočovský, P., Durmis, I. (1984). Technology of heat treatment of metals. Bratislava: ALFA.
[21] Abid, M, Nash, D.H,, Javed, S., Wajid, H.A. (2018). Performance of a gasketed joint under bolt up and combined pressure, axial and thermal loading – FEA study. International Journal of Pressure Vessels and Piping. 168, 166-173. https://doi.org/10.1016/j.ijpvp.2018.10.014.
[22] Moravec, J., Jančušová, M., Kuba, J., Stroka, R. (2010). Technology of forming technical materials. Edis. ISBN 978-80-554-0220-9.
[23] Pfann, W.G. (1963). Zone melting. New York: John Wiley and sons.
[24] Tillová, E., Kucharikova, L., Belan, J. (2020). Steels with special properties - anti-corrosion steels. 2020. http://kmi2.uniza.sk/wp-content/uploads/2020/01/1_Obsah-%C3%9Avod-2.pdf.
[25] Dorazil, E. et.al. (1979). Material science II. Brno. ISBN: 55-600-79.
[26] Pluhar, J., Koritta, J. (1966). Engineering materials. SNTL Publishing house of technical literature. Praha.
[27] Albaharna, O.T., Argyropoulos, S.A. (1988). Artificial intelligence for materials processing and process control. Journal of Metals. 40(10), 6-10. https://doi.org/10.1007/BF03257973.
[28] Davis, J.R. (1994). Stainless steels. Chagrin falls: ASM international. ISBN 0-87170-503-6
[29] Bernasovský, P. (2017). Atypical Cases of Welded Structure Failures. Solid State Phenomena. 270, 86-92.
[30] Martinec, J., Šveidler, Z., Janovec, J. (2014). Corrosion-resistant materials - basic types of steel and recommendations for their weldability. Retrieved Marcg, 8, 2023 from http://old.konstrukce.cz/clanek/korozivzdorne-materialy-zakladni%typy-oceli-a-doporuceni-pro-jejich-svaritelnost/
[31] Brenner, O. (2003). Corrosion-resistant steels as structural materials. Retrieved April, 2, 2023 from https://www.mmspektrum.com/clanek/korozivzdorne%oceli-jako-konstrukcni-materialy.
[32] Bahrami, A., Taheri, P. (2019). A study on the failure of AISI 304 stainless steel tubes in a gas heater unit. Metals. 9(9), 969. 1-7. https://doi.org/10.3390/met9090969.