Details
Title
The Influence of Cooling Rate on the Damping Characteristics of the ZnAl27Cu2 AlloyJournal title
Archives of Foundry EngineeringYearbook
2024Volume
vol. 24Issue
No 3Affiliation
Piwowarski, G. : AGH University of Krakow, Poland ; Cepielik, J. : AGH University of Krakow, PolandAuthors
Keywords
Zinc alloys ; damping coefficient ; High-damping metals ; Cooling rate ; Ultrasound testingDivisions of PAS
Nauki TechniczneCoverage
109-114Publisher
The Katowice Branch of the Polish Academy of SciencesBibliography
[1] Ritchie, I.G. & Pan, Z.-L. (1991). High damping metals and alloys. Metallurgical Transactions A. 22, 607-616. DOI: https://doi.org/10.1007/BF02670281.
[2] Ritchie, I.G., Pan, Z.-L. & Goodwin, F.E. (1991). Characterization of the damping properties of die-cast zinc-aluminum alloys. Metallurgical Transactions A. 22, 617-622. DOI: https://doi.org/10.1007/BF02670282.
[3] Piwowarski, G. & Gracz, B. (2022). The influence of cooling rate on the damping characteristics of the ZnAl4Cu1 alloy. Journal of Casting & Materials Engineering. 6(3), 58-63. DOI: 10.7494/jcme.2022.6.3.58.
[4] Girish, B.M., Prakash, K.R., Satish, B.M., Jain, P.K. & Kameshwary, D. (2011). Need for optimization of graphite particle reinforcement in ZA-27 alloy composites for tribological applications. Materials Science and Engineering: A. 530, 382-388. https://doi.org/10.1016/j.msea.2011.09.100.
[5] Sirong Y., Zhenming H. & Kai C. (1996). Dry sliding friction and wear behaviour of short fibre reinforced zinc-based alloy composites. Wear. 198(1-2), 108-114. https://doi.org/10.1016/0043-1648(96)06940-2
[6] Rzadkosz, S. (1995). The influence of chemical composition and phase transformations on the damping and mechanical properties of aluminum-zinc alloys. Rozprawy i monografie. Kraków: Wydawnictwa AGH. (in Polish).
[7] Krajewski, W.K. (2013). Zinc-aluminum alloys. Types, properties, applications. Kraków: Wydawnictwo Naukowe AKAPIT. (in Polish).
[8] Górny, M. & Sikora, G. (2015). Effect of titanium addition and cooling rate on primary α(Al) grains and tensile properties of Al-Cu alloy. Journal of Materials Engineering and Performance. 24(3), 1150-1156. https://doi.org/10.1007/s11665-014-1380-2.
[9] Shabestari, S.G. & Malekan, M. (2005). Thermal analysis study of the effect of the cooling rate on the mictrostructure and solidification parameters of 319 aluminum alloy. Canadian Metallurgical Quarterly. 44(3), 305-312. DOI: https://doi.org/10.1179/000844305794409409.
[10] Lelito, J., Żak, P.L., Gracz, B., Szucki, M., Kalisz, D., Malinowski, P., Suchy, J.S. & Krajewski, W.K. (2015). Determination of substrate log-normal distribution in the AZ91/SiCp composite. Metalurgija, 54(1), 204-206.
[11] Piwowarski, G., Buraś, J. & Szucki, M. (2017). Influence of AlTi3C0.15 modification treatment on damping properties of ZnAl10 alloy. China Foundry. 14(4), 292-296. https://doi.org/10.1007/s41230-017-7070-6.
[12] Petzow G. (1999) Metallographic Etching. Techniques for Metallography, Ceramography, Plastographyk., 2nd Ed. ASM International.
[13] Nikolić, F. Štajduhar, I. & Čanađija, M. (2021) Casting microstructure inspection using computer vision: dendrite spacing in aluminum alloys. Metals. 11(5), 756, 1-13. https://doi.org/10.3390/met11050756.
[14] Vandersluis, E. & Ravindran, C. (2019) Influence of solidification rate on the microstructure, mechanical properties, and thermal conductivity of cast A319 Al alloy. Journal of Materials Science. 54, 4325-4339. https://doi.org/10.1007/s10853-018-3109-3.
[15] Djurdjevič, M. & Grzinčič, M. (2012) The effect of major alloying elements on the size of the secondary dendrite arm spacing in the as-cast Al-Si-Cu alloys. Archives of Foundry Engineering. 12(1), 19-24. DOI: 10.2478/v10266-012-0004-2