Szczegóły

Tytuł artykułu

Research on Ore Fragmentation Recognition Method Based on Deep Learning

Tytuł czasopisma

Archives of Mining Sciences

Rocznik

2024

Wolumin

vol. 69

Numer

No 3

Autorzy

Afiliacje

Jing, Hongdi : Chinese Academy of Sciences,Shenya ng Institute of Automat ion, Shenya ng 110016, China ; Jing, Hongdi : Chinese Academy of Sciences, Institutes for Robotics and Intelligent Manufacturing, Shenyang 110169, China ; He, Wenxuan : Ansteel Group Mining Corporat ion Limited, Anshan 114001, China ; Yu, Miao : Chinese Academy of Sciences,Shenya ng Institute of Automat ion, Shenya ng 110016, China ; Yu, Miao : Chinese Academy of Sciences, Institutes for Robotics and Intelligent Manufacturing, Shenyang 110169, China ; Li, Xin : Chinese Academy of Sciences,Shenya ng Institute of Automat ion, Shenya ng 110016, China ; Li, Xin : Chinese Academy of Sciences, Institutes for Robotics and Intelligent Manufacturing, Shenyang 110169, China ; Zhang, Xingfan : Chinese Academy of Sciences,Shenya ng Institute of Automat ion, Shenya ng 110016, China ; Zhang, Xingfan : Chinese Academy of Sciences, Institutes for Robotics and Intelligent Manufacturing, Shenyang 110169, China ; Liu, Xiaosong : Chinese Academy of Sciences,Shenya ng Institute of Automat ion, Shenya ng 110016, China ; Liu, Xiaosong : Chinese Academy of Sciences, Institutes for Robotics and Intelligent Manufacturing, Shenyang 110169, China ; Cui, Yang : Chinese Academy of Sciences,Shenya ng Institute of Automat ion, Shenya ng 110016, China ; Cui, Yang : Chinese Academy of Sciences, Institutes for Robotics and Intelligent Manufacturing, Shenyang 110169, China ; Wang, Zhijian : Chinese Academy of Sciences,Shenya ng Institute of Automat ion, Shenya ng 110016, China ; Wang, Zhijian : Chinese Academy of Sciences, Institutes for Robotics and Intelligent Manufacturing, Shenyang 110169, China

Słowa kluczowe

underground mines ; ore fragmentation ; visual identity ; recognition ; deep Learning

Wydział PAN

Nauki Techniczne

Zakres

447-459

Wydawca

Committee of Mining PAS

Data

26.09.2024

Typ

Article

Identyfikator

DOI: 10.24425/ams.2024.151445 ; ISSN 0860-7001
×