Szczegóły Szczegóły PDF BIBTEX RIS Tytuł artykułu Research on Ore Fragmentation Recognition Method Based on Deep Learning Tytuł czasopisma Archives of Mining Sciences Rocznik 2024 Wolumin vol. 69 Numer No 3 Autorzy Jing, Hongdi ; He, Wenxuan ; Yu, Miao ; Li, Xin ; Zhang, Xingfan ; Liu, Xiaosong ; Cui, Yang ; Wang, Zhijian Afiliacje Jing, Hongdi : Chinese Academy of Sciences,Shenya ng Institute of Automat ion, Shenya ng 110016, China ; Jing, Hongdi : Chinese Academy of Sciences, Institutes for Robotics and Intelligent Manufacturing, Shenyang 110169, China ; He, Wenxuan : Ansteel Group Mining Corporat ion Limited, Anshan 114001, China ; Yu, Miao : Chinese Academy of Sciences,Shenya ng Institute of Automat ion, Shenya ng 110016, China ; Yu, Miao : Chinese Academy of Sciences, Institutes for Robotics and Intelligent Manufacturing, Shenyang 110169, China ; Li, Xin : Chinese Academy of Sciences,Shenya ng Institute of Automat ion, Shenya ng 110016, China ; Li, Xin : Chinese Academy of Sciences, Institutes for Robotics and Intelligent Manufacturing, Shenyang 110169, China ; Zhang, Xingfan : Chinese Academy of Sciences,Shenya ng Institute of Automat ion, Shenya ng 110016, China ; Zhang, Xingfan : Chinese Academy of Sciences, Institutes for Robotics and Intelligent Manufacturing, Shenyang 110169, China ; Liu, Xiaosong : Chinese Academy of Sciences,Shenya ng Institute of Automat ion, Shenya ng 110016, China ; Liu, Xiaosong : Chinese Academy of Sciences, Institutes for Robotics and Intelligent Manufacturing, Shenyang 110169, China ; Cui, Yang : Chinese Academy of Sciences,Shenya ng Institute of Automat ion, Shenya ng 110016, China ; Cui, Yang : Chinese Academy of Sciences, Institutes for Robotics and Intelligent Manufacturing, Shenyang 110169, China ; Wang, Zhijian : Chinese Academy of Sciences,Shenya ng Institute of Automat ion, Shenya ng 110016, China ; Wang, Zhijian : Chinese Academy of Sciences, Institutes for Robotics and Intelligent Manufacturing, Shenyang 110169, China Słowa kluczowe underground mines ; ore fragmentation ; visual identity ; recognition ; deep Learning Wydział PAN Nauki Techniczne Zakres 447-459 Wydawca Committee of Mining PAS Data 26.09.2024 Typ Article Identyfikator DOI: 10.24425/ams.2024.151445 ; ISSN 0860-7001